IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i8p3204-3217.html
   My bibliography  Save this article

A tale of two regimes: Theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications

Author

Listed:
  • Chang, Charles
  • Fuh, Cheng-Der
  • Lin, Shih-Kuei

Abstract

We provide closed-form solutions for a continuous time, Markov-modulated jump diffusion model in a general equilibrium framework for options prices under a variety of jump diffusion specifications. We further demonstrate that the two-state model provides the leptokurtic return features, volatility smile, and volatility clustering observed empirically for the Dow Jones Industrial Average (DJIA) and its component stocks. Using 10years of stock return data, we confirm the existence of jump intensity switching and clustering, illustrate transition probabilities, and verify superior empirical fit over competing Poisson-style models.

Suggested Citation

  • Chang, Charles & Fuh, Cheng-Der & Lin, Shih-Kuei, 2013. "A tale of two regimes: Theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3204-3217.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3204-3217
    DOI: 10.1016/j.jbankfin.2013.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613001520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    3. Philip H. Dybvig, Chi-fu Huang, 1988. "Nonnegative Wealth, Absence of Arbitrage, and Feasible Consumption Plans," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 377-401.
    4. Chan, Wing H., 2004. "Conditional correlated jump dynamics in foreign exchange," Economics Letters, Elsevier, vol. 83(1), pages 23-28, April.
    5. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    6. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    7. Robert Elliott & Tak Siu, 2011. "A risk-based approach for pricing American options under a generalized Markov regime-switching model," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1633-1646.
    8. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    9. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    10. Hui Chen, 2010. "Macroeconomic Conditions and the Puzzles of Credit Spreads and Capital Structure," Journal of Finance, American Finance Association, vol. 65(6), pages 2171-2212, December.
    11. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    14. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    15. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    16. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    17. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    18. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    19. Xiaowei Ding & Kay Giesecke & Pascal I. Tomecek, 2009. "Time-Changed Birth Processes and Multiname Credit Derivatives," Operations Research, INFORMS, vol. 57(4), pages 990-1005, August.
    20. Beckers, Stan, 1981. "A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(1), pages 127-140, March.
    21. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    22. Wing H. Chan, 2003. "A correlated bivariate Poisson jump model for foreign exchange," Empirical Economics, Springer, vol. 28(4), pages 669-685, November.
    23. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    24. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    25. Bo, Lijun & Wang, Yongjin & Yang, Xuewei, 2010. "Markov-modulated jump-diffusions for currency option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 461-469, June.
    26. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    27. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    28. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lian, Yu-Min & Liao, Szu-Lang & Chen, Jun-Home, 2015. "State-dependent jump risks for American gold futures option pricing," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 115-133.
    2. Son-Nan Chen & Pao-Peng Hsu & Chang-Yi Li, 2016. "Pricing credit-risky bonds and spread options modelling credit-spread term structures with two-dimensional Markov-modulated jump-diffusion," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 573-592, April.
    3. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    4. Shih-Kuei Lin & Yu-Min Lian & Szu-Lang Liao, 2014. "Pricing gold options under Markov-modulated jump-diffusion processes," Applied Financial Economics, Taylor & Francis Journals, vol. 24(12), pages 825-836, June.
    5. Lin, Shih-Kuei & Peng, Jin-Lung & Chao, Wei-Hsiung & Wu, An-Chi, 2016. "The extension from independence to dependence between jump frequency and jump size in Markov-modulated jump diffusion models," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 217-235.
    6. Hsu, Yuan-Lin & Lin, Shih-Kuei & Hung, Ming-Chin & Huang, Tzu-Hui, 2016. "Empirical analysis of stock indices under a regime-switching model with dependent jump size risks," Economic Modelling, Elsevier, vol. 54(C), pages 260-275.
    7. Ben-zhang Yang & Jia Yue & Ming-hui Wang & Nan-jing Huang, 2018. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Papers 1805.06226, arXiv.org, revised May 2018.
    8. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    9. Chen, Jun-Home & Lian, Yu-Min & Liao, Szu-Lang, 2022. "Pricing catastrophe equity puts with counterparty risks under Markov-modulated, default-intensity processes," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    10. Huang, Chun-Sung & O'Hara, John G. & Mataramvura, Sure, 2022. "Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    11. Ayub Ahmadi & Mahdieh Tahmasebi, 2024. "Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus," Papers 2405.00473, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    5. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    6. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    7. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    8. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    9. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    10. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    11. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    12. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    13. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    14. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    15. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    16. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    17. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    18. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    19. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    20. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).

    More about this item

    Keywords

    Markov-modulated; Jump diffusion; Volatility clustering; Jump clustering; Volatility smile; Options pricing;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3204-3217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.