IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v156y2023icp291-311.html
   My bibliography  Save this article

Singular McKean–Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality

Author

Listed:
  • Ren, Panpan

Abstract

The well-posedness and regularity estimates in initial distributions are derived for singular McKean–Vlasov SDEs, where the drift contains a locally standard integrable term and a superlinear term in the spatial variable, and is Lipschitz continuous in the distribution variable with respect to a weighted variation distance. When the superlinear term is strengthened to be Lipschitz continuous, Wang’s Harnack inequality is established. These results are new also for the classical Itô SDEs where the coefficients are distribution independent.

Suggested Citation

  • Ren, Panpan, 2023. "Singular McKean–Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 291-311.
  • Handle: RePEc:eee:spapps:v:156:y:2023:i:c:p:291-311
    DOI: 10.1016/j.spa.2022.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922002423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Feng-Yu, 2018. "Distribution dependent SDEs for Landau type equations," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 595-621.
    2. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Xia, Pengcheng & Xie, Longjie & Zhang, Xicheng & Zhao, Guohuan, 2020. "Lq(Lp)-theory of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5188-5211.
    4. Huang, Xing & Wang, Feng-Yu, 2019. "Distribution dependent SDEs with singular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4747-4770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning, Ning & Wu, Jing & Zheng, Jinwei, 2024. "One-dimensional McKean–Vlasov stochastic variational inequalities and coupled BSDEs with locally Hölder noise coefficients," Stochastic Processes and their Applications, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    3. Ma, Xiaocui & Yue, Haitao & Xi, Fubao, 2022. "The averaging method for doubly perturbed distribution dependent SDEs," Statistics & Probability Letters, Elsevier, vol. 189(C).
    4. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.
    5. Ning, Ning & Wu, Jing & Zheng, Jinwei, 2024. "One-dimensional McKean–Vlasov stochastic variational inequalities and coupled BSDEs with locally Hölder noise coefficients," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    6. Jianhai Bao & Xing Huang, 2022. "Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1187-1215, June.
    7. Li, Butong & Meng, Yongna & Sun, Xiaobin & Yang, Ting, 2022. "Optimal strong convergence rate for a class of McKean–Vlasov SDEs with fast oscillating perturbation," Statistics & Probability Letters, Elsevier, vol. 191(C).
    8. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Yifan Bai & Xing Huang, 2023. "Log-Harnack Inequality and Exponential Ergodicity for Distribution Dependent Chan–Karolyi–Longstaff–Sanders and Vasicek Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1902-1921, September.
    10. Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
    11. Wang, Feng-Yu, 2023. "Exponential ergodicity for singular reflecting McKean–Vlasov SDEs," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 265-293.
    12. Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    13. Wu, Mingyan & Hao, Zimo, 2023. "Well-posedness of density dependent SDE driven by α-stable process with Hölder drifts," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 416-442.
    14. Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
    15. Huang, Xing & Wang, Feng-Yu, 2019. "Distribution dependent SDEs with singular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4747-4770.
    16. Suo, Yongqiang & Yuan, Chenggui & Zhang, Shao-Qin, 2022. "Transportation cost inequalities for SDEs with irregular drifts," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 288-311.
    17. Chen, Xingyuan & dos Reis, Gonçalo, 2022. "A flexible split‐step scheme for solving McKean‐Vlasov stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    18. Xiaojie Ding & Huijie Qiao, 2021. "Euler–Maruyama Approximations for Stochastic McKean–Vlasov Equations with Non-Lipschitz Coefficients," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1408-1425, September.
    19. Xie, Longjie & Yang, Li, 2022. "The Smoluchowski–Kramers limits of stochastic differential equations with irregular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 91-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:156:y:2023:i:c:p:291-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.