IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v189y2022ics0167715222001389.html
   My bibliography  Save this article

The averaging method for doubly perturbed distribution dependent SDEs

Author

Listed:
  • Ma, Xiaocui
  • Yue, Haitao
  • Xi, Fubao

Abstract

This work studies the averaging method for doubly perturbed distribution dependent SDEs, in which an approximation theorem is established. Using the fixed point theorem, we prove the well-posedness of doubly perturbed distribution dependent SDEs. Then we prove that the solutions of the original equations converge to those of the averaged equations in the sense of mean square and probability. Moreover, an example is provided to show the applications of our results.

Suggested Citation

  • Ma, Xiaocui & Yue, Haitao & Xi, Fubao, 2022. "The averaging method for doubly perturbed distribution dependent SDEs," Statistics & Probability Letters, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001389
    DOI: 10.1016/j.spl.2022.109588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Feng-Yu, 2018. "Distribution dependent SDEs for Landau type equations," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 595-621.
    2. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Chaumont, L. & Doney, R. A., 2000. "Some calculations for doubly perturbed Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 61-74, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Panpan, 2023. "Singular McKean–Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 291-311.
    2. Li, Butong & Meng, Yongna & Sun, Xiaobin & Yang, Ting, 2022. "Optimal strong convergence rate for a class of McKean–Vlasov SDEs with fast oscillating perturbation," Statistics & Probability Letters, Elsevier, vol. 191(C).
    3. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Yifan Bai & Xing Huang, 2023. "Log-Harnack Inequality and Exponential Ergodicity for Distribution Dependent Chan–Karolyi–Longstaff–Sanders and Vasicek Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1902-1921, September.
    5. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    6. Xiao-Yu Zhao, 2024. "Well-Posedness for Path-Distribution Dependent Stochastic Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3654-3687, November.
    7. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    8. Yingxu Tian & Haoyan Zhang, 2023. "Perturbed Skew Diffusion Processes," Mathematics, MDPI, vol. 11(11), pages 1-12, May.
    9. Serlet, Laurent, 2013. "Hitting times for the perturbed reflecting random walk," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 110-130.
    10. Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    11. Hiderah Kamal, 2020. "Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the maximum process," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 33-47, March.
    12. Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
    13. Xing Huang & Xiaochen Ma, 2024. "Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3152-3176, November.
    14. Huang, Xing & Wang, Feng-Yu, 2019. "Distribution dependent SDEs with singular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4747-4770.
    15. Chen, Xingyuan & dos Reis, Gonçalo, 2022. "A flexible split‐step scheme for solving McKean‐Vlasov stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    16. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.
    17. Ning, Ning & Wu, Jing & Zheng, Jinwei, 2024. "One-dimensional McKean–Vlasov stochastic variational inequalities and coupled BSDEs with locally Hölder noise coefficients," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    18. Jianhai Bao & Xing Huang, 2022. "Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1187-1215, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.