IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v378y2020ics0096300320301685.html
   My bibliography  Save this article

Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems

Author

Listed:
  • Su, Guangwang
  • Lu, Liang
  • Tang, Bo
  • Liu, Zhenhai

Abstract

In this work, we deal with the quasilinearization technique for a class of nonlinear Riemann-Liouville fractional-order two-point boundary value problems. Using quasilinearization technique, we construct a monotone sequence of approximate solutions which has quadratic convergence to the unique solution of the original problem, and establish the corresponding convergence estimates. Moreover, the performance of the technique is examined through a numerical example, which shows that our regularization method is available and stable.

Suggested Citation

  • Su, Guangwang & Lu, Liang & Tang, Bo & Liu, Zhenhai, 2020. "Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems," Applied Mathematics and Computation, Elsevier, vol. 378(C).
  • Handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s0096300320301685
    DOI: 10.1016/j.amc.2020.125199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320301685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dassios, Ioannis K. & Baleanu, Dumitru I., 2018. "Caputo and related fractional derivatives in singular systems," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 591-606.
    2. Uğurlu, Ekin & Baleanu, Dumitru & Taş, Kenan, 2018. "On square integrable solutions of a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 153-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Xiao & Wang, Yijing & Zuo, Zhiqiang, 2022. "Co-design of state-dependent switching law and control scheme for variable-order fractional nonlinear switched systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Dassios, Ioannis & Tzounas, Georgios & Liu, Muyang & Milano, Federico, 2022. "Singular over-determined systems of linear differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 396-412.
    3. Liao, Xiaozhong & Wang, Yong & Yu, Donghui & Lin, Da & Ran, Manjie & Ruan, Pengbo, 2023. "Modeling and analysis of Buck-Boost converter with non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Fabio Tramontana & Laura Gardini, 2021. "Revisiting Samuelson’s models, linear and nonlinear, stability conditions and oscillating dynamics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-15, December.
    5. Dassios, Ioannis & Tzounas, Georgios & Milano, Federico, 2019. "The Möbius transform effect in singular systems of differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 338-353.
    6. Fernando Ortega & Maria Filomena Barros, 2020. "The Samuelson macroeconomic model as a singular linear matrix difference equation," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-10, December.
    7. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Maria Filomena Barros & Fernando Ortega, 2019. "An optimal equilibrium for a reformulated Samuelson economic discrete time system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s0096300320301685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.