IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v409y2021ics0096300320305610.html
   My bibliography  Save this article

A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation

Author

Listed:
  • Falcone, Alberto
  • Garro, Alfredo
  • Mukhametzhanov, Marat S.
  • Sergeyev, Yaroslav D.

Abstract

This paper is dedicated to numerical computation of higher order derivatives in Simulink. In this paper, a new module has been implemented to achieve this purpose within the Simulink-based Infinity Computer solution, recently introduced by the authors. This module offers several blocks to calculate higher order derivatives of a function given by the arithmetic operations and elementary functions. Traditionally, this can be done in Simulink using finite differences only, for which it is well-known that they can be characterized by instability and low accuracy. Moreover, the proposed module allows to calculate higher order Lie derivatives embedded in the numerical solution to Ordinary Differential Equations (ODEs). Traditionally, Simulink does not offer any practical solution for this case without using difficult external libraries and methodologies, which are domain-specific, not general-purpose and have their own limitations. The proposed differentiation module bridges this gap, is simple and does not require any additional knowledge or skills except basic knowledge of the Simulink programming language. Finally, the block for constructing the Taylor expansion of the differentiated function is also proposed, adding so another efficient numerical method for solving ODEs and for polynomial approximation of the functions. Numerical experiments on several classes of test problems confirm advantages of the proposed solution.

Suggested Citation

  • Falcone, Alberto & Garro, Alfredo & Mukhametzhanov, Marat S. & Sergeyev, Yaroslav D., 2021. "A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  • Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305610
    DOI: 10.1016/j.amc.2020.125606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amodio, P. & Iavernaro, F. & Mazzia, F. & Mukhametzhanov, M.S. & Sergeyev, Ya.D., 2017. "A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 24-39.
    2. Cococcioni, Marco & Pappalardo, Massimo & Sergeyev, Yaroslav D., 2018. "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 298-311.
    3. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    4. De Leone, Renato, 2018. "Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 290-297.
    5. Gaudioso, Manlio & Giallombardo, Giovanni & Mukhametzhanov, Marat, 2018. "Numerical infinitesimals in a variable metric method for convex nonsmooth optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 312-320.
    6. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    2. Fiaschi, Lorenzo & Cococcioni, Marco, 2021. "Non-Archimedean game theory: A numerical approach," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    4. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
    5. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    6. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    7. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    8. Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
    9. Borri, Alessandro & Carravetta, Francesco & Palumbo, Pasquale, 2023. "Quadratized Taylor series methods for ODE numerical integration," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    10. Lili Gong & Wu Cao & Kangli Liu & Jianfeng Zhao & Xiang Li, 2018. "Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network," Energies, MDPI, vol. 11(6), pages 1-16, May.
    11. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    12. Renato Bruni & Fabio Celani, 2019. "Combining Global and Local Strategies to Optimize Parameters in Magnetic Spacecraft Control via Attitude Feedback," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 997-1014, June.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    14. Caldarola, Fabio, 2018. "The Sierpinski curve viewed by numerical computations with infinities and infinitesimals," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 321-328.
    15. Tohmé, Fernando & Caterina, Gianluca & Gangle, Rocco, 2020. "Computing Truth Values in the Topos of Infinite Peirce’s α-Existential Graphs," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    16. Lorenzo Fiaschi & Marco Cococcioni, 2022. "A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
    17. Cococcioni, Marco & Pappalardo, Massimo & Sergeyev, Yaroslav D., 2018. "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 298-311.
    18. Mustafa Sivri & Hale Gonce Kocken & Inci Albayrak & Sema Akin, 2019. "Generating a set of compromise solutions of a multi objective linear programming problem through game theory," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(2), pages 77-88.
    19. Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
    20. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.