IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v318y2018icp298-311.html
   My bibliography  Save this article

Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm

Author

Listed:
  • Cococcioni, Marco
  • Pappalardo, Massimo
  • Sergeyev, Yaroslav D.

Abstract

Numerous problems arising in engineering applications can have several objectives to be satisfied. An important class of problems of this kind is lexicographic multi-objective problems where the first objective is incomparably more important than the second one which, in its turn, is incomparably more important than the third one, etc. In this paper, Lexicographic Multi-Objective Linear Programming (LMOLP) problems are considered. To tackle them, traditional approaches either require solution of a series of linear programming problems or apply a scalarization of weighted multiple objectives into a single-objective function. The latter approach requires finding a set of weights that guarantees the equivalence of the original problem and the single-objective one and the search of correct weights can be very time consuming. In this work a new approach for solving LMOLP problems using a recently introduced computational methodology allowing one to work numerically with infinities and infinitesimals is proposed. It is shown that a smart application of infinitesimal weights allows one to construct a single-objective problem avoiding the necessity to determine finite weights. The equivalence between the original multi-objective problem and the new single-objective one is proved. A simplex-based algorithm working with finite and infinitesimal numbers is proposed, implemented, and discussed. Results of some numerical experiments are provided.

Suggested Citation

  • Cococcioni, Marco & Pappalardo, Massimo & Sergeyev, Yaroslav D., 2018. "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 298-311.
  • Handle: RePEc:eee:apmaco:v:318:y:2018:i:c:p:298-311
    DOI: 10.1016/j.amc.2017.05.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourkarimi, L. & Zarepisheh, M., 2007. "A dual-based algorithm for solving lexicographic multiple objective programs," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1348-1356, February.
    2. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    3. Amodio, P. & Iavernaro, F. & Mazzia, F. & Mukhametzhanov, M.S. & Sergeyev, Ya.D., 2017. "A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 24-39.
    4. Sergeyev, Yaroslav D., 2007. "Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 50-75.
    5. Lolli, Gabriele, 2015. "Metamathematical investigations on the theory of Grossone," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 3-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tohmé, Fernando & Caterina, Gianluca & Gangle, Rocco, 2020. "Computing Truth Values in the Topos of Infinite Peirce’s α-Existential Graphs," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Fiaschi, Lorenzo & Cococcioni, Marco, 2021. "Non-Archimedean game theory: A numerical approach," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    4. Lorenzo Fiaschi & Marco Cococcioni, 2022. "A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
    5. Lili Gong & Wu Cao & Kangli Liu & Jianfeng Zhao & Xiang Li, 2018. "Spatial and Temporal Optimization Strategy for Plug-In Electric Vehicle Charging to Mitigate Impacts on Distribution Network," Energies, MDPI, vol. 11(6), pages 1-16, May.
    6. Mustafa Sivri & Hale Gonce Kocken & Inci Albayrak & Sema Akin, 2019. "Generating a set of compromise solutions of a multi objective linear programming problem through game theory," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(2), pages 77-88.
    7. Falcone, Alberto & Garro, Alfredo & Mukhametzhanov, Marat S. & Sergeyev, Yaroslav D., 2021. "A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    2. Amodio, P. & Iavernaro, F. & Mazzia, F. & Mukhametzhanov, M.S. & Sergeyev, Ya.D., 2017. "A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 24-39.
    3. Caldarola, Fabio, 2018. "The Sierpinski curve viewed by numerical computations with infinities and infinitesimals," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 321-328.
    4. De Leone, Renato, 2018. "Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 290-297.
    5. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    6. Lolli, Gabriele, 2015. "Metamathematical investigations on the theory of Grossone," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 3-14.
    7. Kauffman, Louis H., 2015. "Infinite computations and the generic finite," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 25-35.
    8. Fiaschi, Lorenzo & Cococcioni, Marco, 2021. "Non-Archimedean game theory: A numerical approach," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    9. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    10. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    11. Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    12. Margenstern, Maurice, 2016. "Infinigons of the hyperbolic plane and grossone," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 45-53.
    13. Herrmann, Richard, 2015. "A fractal approach to the dark silicon problem: A comparison of 3D computer architectures – Standard slices versus fractal Menger sponge geometry," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 38-41.
    14. Zhang Jiangao & Shitao Yang, 2016. "On the Lexicographic Centre of Multiple Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 600-614, February.
    15. Falcone, Alberto & Garro, Alfredo & Mukhametzhanov, Marat S. & Sergeyev, Yaroslav D., 2021. "A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    16. Khorram, E. & Zarepisheh, M. & Ghaznavi-ghosoni, B.A., 2010. "Sensitivity analysis on the priority of the objective functions in lexicographic multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1162-1168, December.
    17. M. Zarepisheh & E. Khorram, 2011. "On the transformation of lexicographic nonlinear multiobjective programs to single objective programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 217-231, October.
    18. Tohmé, Fernando & Caterina, Gianluca & Gangle, Rocco, 2020. "Computing Truth Values in the Topos of Infinite Peirce’s α-Existential Graphs," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    19. Lorenzo Fiaschi & Marco Cococcioni, 2022. "A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
    20. Borri, Alessandro & Carravetta, Francesco & Palumbo, Pasquale, 2023. "Quadratized Taylor series methods for ODE numerical integration," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:318:y:2018:i:c:p:298-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.