IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321006317.html
   My bibliography  Save this article

Spectral quasi linearization simulation on the radiative nanofluid spraying over a permeable inclined spinning disk considering the existence of heat source/sink

Author

Listed:
  • Acharya, Nilankush

Abstract

This investigation enlightens the hydrothermal features of chemically reactive nanofluidic transport over an inclined spinning disk. The revolving disk is considered to move freely with uniform angular velocity. The surface of the disk is permeable. The nanofluid flow is considered thermally radiative. Also, the presence of a heat source/sink is included to portray a more realistic outcome. How the permeability feature of the surface affects the hydrothermal integrity has been analyzed in detail. The prime dimensional equations are made dimensionless using appropriate similarity transformation. After then, the spectral quasi linearization method (SQLM) is operated to solve those equations. Residual plots are extracted to exhibit the speediness of the introduced SQLM technique. Several graphs, three-dimensional figures, and tables are rendered to avail the consequences of the underlying parameters. The linear regression slope procedure is included to quantify the enhancement or reduction of the heat and mass transport as well as shear stresses. The outcomes assured that the normalized thickness parameter augments the radial velocity and nanoparticle concentration. Chemical reaction reduces the concentration profile for suction but amplifies for injection. The temperature drops off for suction, while it amplifies for injection. Heat transport drops off for heat source, but heat sink conveys the reverse scenario. Heat source drops down the heat transference at the rate of 0.69874 for injection and 0.8374 for suction. Mass transport amplifies for chemical reaction during injection, while the reverse trend is detected for suction. This investigation has noteworthy applications in the mechanical and chemical engineering process.

Suggested Citation

  • Acharya, Nilankush, 2021. "Spectral quasi linearization simulation on the radiative nanofluid spraying over a permeable inclined spinning disk considering the existence of heat source/sink," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006317
    DOI: 10.1016/j.amc.2021.126547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Mehdi Rashidi & Seyyed Amin Mohimanian pour, 2010. "Analytic Solution of Steady Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk by Differential Transform Method," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-15, September.
    2. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    2. Lekoko, Modisawatsona Lucas & Oloniiju, Shina Daniel & Magalakwe, Gabriel, 2022. "Analysis of buoyancy driven flow inside a vertical filter chamber," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    2. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    3. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    4. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    5. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    6. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    7. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    8. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    10. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    11. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    12. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    13. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    14. Shaafi, T. & Sairam, K. & Gopinath, A. & Kumaresan, G. & Velraj, R., 2015. "Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 563-573.
    15. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
    16. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    17. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    18. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    19. Awad, Afrah & Navarro, Helena & Ding, Yulong & Wen, Dongsheng, 2018. "Thermal-physical properties of nanoparticle-seeded nitrate molten salts," Renewable Energy, Elsevier, vol. 120(C), pages 275-288.
    20. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.