An efficient approximation technique applied to a non-linear Lane–Emden pantograph delay differential model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2021.126123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sabir Widatalla & Mohammed Abdulai Koroma, 2012. "Approximation Algorithm for a System of Pantograph Equations," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-9, March.
- Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Ezz-Eldien, S.S., 2018. "On solving systems of multi-pantograph equations via spectral tau method," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 63-73.
- Izadi, Mohammad, 2021. "A discontinuous finite element approximation to singular Lane-Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yüzbaşı, Şuayip & Izadi, Mohammad, 2022. "Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment," Applied Mathematics and Computation, Elsevier, vol. 431(C).
- Mohammad Izadi & Şuayip Yüzbaşi & Samad Noeiaghdam, 2021. "Approximating Solutions of Non-Linear Troesch’s Problem via an Efficient Quasi-Linearization Bessel Approach," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad Izadi & Şuayip Yüzbaşi & Samad Noeiaghdam, 2021. "Approximating Solutions of Non-Linear Troesch’s Problem via an Efficient Quasi-Linearization Bessel Approach," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
- Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Izadi, Mohammad & Roul, Pradip, 2022. "Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications," Applied Mathematics and Computation, Elsevier, vol. 429(C).
- Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Khalid, Nauman & Abbas, Muhammad & Iqbal, Muhammad Kashif, 2019. "Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 393-407.
- Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Guirao, Juan L.G. & Saeed, Tareq, 2021. "Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Yüzbaşı, Şuayip & Izadi, Mohammad, 2022. "Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment," Applied Mathematics and Computation, Elsevier, vol. 431(C).
More about this item
Keywords
Bessel functions; Collocation method; Delay differential equation; Lane–Emden equation; Pantograph differential equation; Singular initial-value problems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001715. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.