IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v379y2020ics0096300320302307.html
   My bibliography  Save this article

Master-slave synchronization of complex-valued delayed chaotic Lur’e systems with sampled-data control

Author

Listed:
  • Huang, Yao
  • Bao, Haibo

Abstract

The master-slave synchronization of a type of the complex-valued chaotic Lur’e systems (CVCLSs) with time delay is addressed for the first time, with decomposing complex-valued dynamic systems into two real-valued systems. The complex-valued state variables are introduced in the chaotic Lur’e systems, which expand the application in image processing and remote operation control, and improve the confidentiality in secure communication. Firstly, on the basis of the Lyapunov principle, a Lyapunov-Krasovkii functional (LKF) is established by using certain novel augmented terms, which can take full advantage of the usable information on the sampled-data and the characteristics of the system. Secondly, in the case of a complex-valued delayed chaotic Lur’e system, a more general synchronization criterion is constructed to expand certain current conclusions in the real domain. What’s more, the required gain matrices can be designed according to the solution of the linear matrix inequalities (LMIs). In contrast, the conclusions of this paper are more extensive than some existing studies. At last, the validity of the conclusions of this paper is proved by numerical simulations.

Suggested Citation

  • Huang, Yao & Bao, Haibo, 2020. "Master-slave synchronization of complex-valued delayed chaotic Lur’e systems with sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:apmaco:v:379:y:2020:i:c:s0096300320302307
    DOI: 10.1016/j.amc.2020.125261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    2. Li, Li & Wang, Zhen & Li, Yuxia & Shen, Hao & Lu, Junwei, 2018. "Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 152-169.
    3. Peng, Chao-Chung & Chen, Chieh-Li, 2008. "Robust chaotic control of Lorenz system by backstepping design," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 598-608.
    4. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    5. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Hu, Xiaohui & Xia, Jianwei & Wei, Yunliang & Meng, Bo & Shen, Hao, 2019. "Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Liu, Lizhi & Wang, Yinhe & Gao, Zilin, 2020. "Tracking control for the dynamic links of discrete-time complex dynamical network via state observer," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Cao, Yan & Zhou, Wei-Jie & Liu, Xiao-Zhen & Wu, Kai-Ning, 2024. "Passivity of fractional reaction-diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    6. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Duan, Wenyong & Li, Yan & Sun, Yi & Chen, Jian & Yang, Xiaodong, 2020. "Enhanced master–slave synchronization criteria for chaotic Lur’e systems based on time-delayed feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 276-294.
    8. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    9. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    10. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    11. Wang, Pengfei & Li, Shaoyu & Su, Huan, 2020. "Stabilization of complex-valued stochastic functional differential systems on networks via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    12. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    13. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Hao, Zhang & Xing-yuan, Wang & Peng-fei, Yan & Yu-jie, Sun, 2020. "Combination synchronization and stability analysis of time-varying complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    16. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2021. "Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 562-580.
    17. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    18. Yang, Te & Chen, Guoliang & Xia, Jianwei & Wang, Zhen & Sun, Qun, 2019. "Robust H∞ filtering for polytopic uncertain stochastic systems under quantized sampled outputs," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 688-701.
    19. Zhou, Wenjia & Hu, Yuanfa & Liu, Xiaoyang & Cao, Jinde, 2022. "Finite-time adaptive synchronization of coupled uncertain neural networks via intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    20. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:379:y:2020:i:c:s0096300320302307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.