IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i1p97-101.html
   My bibliography  Save this article

Generalized synchronization of continuous chaotic system

Author

Listed:
  • Wang, Yan-Wu
  • Guan, Zhi-Hong

Abstract

Sufficient condition for the generalized synchronization of continuous chaotic system with a kind of nonlinear transformation is derived. The method is illustrated by applications to Lorenz and Duffing chaotic systems and the simulation results demonstrate the effectiveness of the proposed theorem.

Suggested Citation

  • Wang, Yan-Wu & Guan, Zhi-Hong, 2006. "Generalized synchronization of continuous chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 97-101.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:97-101
    DOI: 10.1016/j.chaos.2004.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runzi, Luo & Zhengmin, Wei, 2009. "Adaptive function projective synchronization of unified chaotic systems with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1266-1272.
    2. Park, Ju H., 2007. "Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1552-1559.
    3. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    4. Aguila-Camacho, Norelys & Duarte-Mermoud, Manuel A. & Delgado-Aguilera, Efredy, 2016. "Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 1-11.
    5. Singh, Piyush Pratap & Singh, Jay Prakash & Roy, B.K., 2014. "Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 31-39.
    6. Li, Guo-Hui, 2007. "Modified projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1786-1790.
    7. Kuetche Mbe, E.S. & Fotsin, H.B. & Kengne, J. & Woafo, P., 2014. "Parameters estimation based adaptive Generalized Projective Synchronization (GPS) of chaotic Chua’s circuit with application to chaos communication by parametric modulation," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 27-37.
    8. Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    9. Molaei, M.R. & Umut, Ömür, 2008. "Generalized synchronization of nuclear spin generator system," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 227-232.
    10. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    11. Martínez-Guerra, Rafael & Mata-Machuca, Juan L., 2014. "Generalized synchronization via the differential primitive element," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 848-857.
    12. Li, Guo-Hui, 2009. "Generalized synchronization of chaos based on suitable separation," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2056-2062.
    13. Park, Ju H., 2007. "Adaptive controller design for modified projective synchronization of Genesio–Tesi chaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1154-1159.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:97-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.