IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/529256.html
   My bibliography  Save this article

Model of Multilayer Knowledge Diffusion for Competence Development in an Organization

Author

Listed:
  • Przemysław Różewski
  • Jarosław Jankowski

Abstract

Growing role of intellectual capital within organizations is affecting new strategies related to knowledge management and competence development. Among different aspects related to this field, knowledge diffusion has become one of the interesting areas from both practitioner and researcher’s perspectives. Several models were proposed with main goal of simulating diffusion and explaining the nature of these processes. Existing models are focused on knowledge diffusion and they assume diffusion within a single layer using knowledge representation. From the organizational perspective connecting several types of knowledge and modelling changes of competence can bring additional value. In this paper we extended existing approaches by using multilayer diffusion model and focused on analysis of competence development process. The proposed model describes competence development process in a new way through horizontal and vertical knowledge diffusion in multilayer network. In the network, agents collaborate and interchange various kinds of knowledge through different layers and these mutual activities affect the competencies in a positive or negative way. Taking into consideration worker’s cognitive and social abilities and the previous level of competence the new competence level can be estimated. The model is developed to support competence management in different organizations.

Suggested Citation

  • Przemysław Różewski & Jarosław Jankowski, 2015. "Model of Multilayer Knowledge Diffusion for Competence Development in an Organization," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
  • Handle: RePEc:hin:jnlmpe:529256
    DOI: 10.1155/2015/529256
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/529256.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/529256.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/529256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:529256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.