IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v380y2020ics0096300320302356.html
   My bibliography  Save this article

Energy bands and Wannier functions of the fractional Kronig-Penney model

Author

Listed:
  • Vellasco-Gomes, Arianne
  • de Figueiredo Camargo, Rubens
  • Bruno-Alfonso, Alexys

Abstract

Energy bands and Wannier functions of the fractional Schrödinger equation with a periodic potential are calculated. The kinetic energy contains a Riesz derivative of order α, with 1 < α ≤ 2, and numerical results are obtained for the Kronig-Penney model. Bloch and Wannier functions show cusps in real space that become sharper as α decreases. Energy bands and Bloch functions are smooth in reciprocal space, except at the Γ point. Depending on symmetry, each Wannier function decays as a power-law with exponent −(α+1) or −(α+2). Closed forms of their asymptotic behaviors are given. Each higher band displays anomalous behavior as a function of potential strength. It first narrows, becoming almost flat, then widens, with its width tending to a constant. The position uncertainty of each Wannier function follows a similar trend.

Suggested Citation

  • Vellasco-Gomes, Arianne & de Figueiredo Camargo, Rubens & Bruno-Alfonso, Alexys, 2020. "Energy bands and Wannier functions of the fractional Kronig-Penney model," Applied Mathematics and Computation, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302356
    DOI: 10.1016/j.amc.2020.125266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    2. J. A. Tenreiro Machado & Alexandra M. S. F. Galhano & Juan J. Trujillo, 2014. "On development of fractional calculus during the last fifty years," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 577-582, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gauhar Rahman & Kottakkaran Sooppy Nisar & Thabet Abdeljawad, 2020. "Tempered Fractional Integral Inequalities for Convex Functions," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    2. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    4. Vasily E. Tarasov, 2021. "Integral Equations of Non-Integer Orders and Discrete Maps with Memory," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    5. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    8. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    9. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    10. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    11. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    12. Kottakkaran Sooppy Nisar, 2019. "Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    13. Faïçal Ndaïrou & Delfim F. M. Torres, 2021. "Optimal Control Problems Involving Combined Fractional Operators with General Analytic Kernels," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    14. Odibat, Zaid & Baleanu, Dumitru, 2023. "A new fractional derivative operator with generalized cardinal sine kernel: Numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 224-233.
    15. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    16. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    17. Samraiz, Muhammad & Mehmood, Ahsan & Iqbal, Sajid & Naheed, Saima & Rahman, Gauhar & Chu, Yu-Ming, 2022. "Generalized fractional operator with applications in mathematical physics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    19. Muhammad Samraiz & Ahsan Mehmood & Saima Naheed & Gauhar Rahman & Artion Kashuri & Kamsing Nonlaopon, 2022. "On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    20. Khater, Mostafa M.A. & Attia, Raghda A.M. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Lu, Dianchen, 2020. "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.