Fully distributed hybrid adaptive learning consensus protocols for a class of non-linearly parameterized multi-agent systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2020.125074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruikun Zhang & Zhongsheng Hou & Honghai Ji & Chenkun Yin, 2016. "Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1084-1094, April.
- Lu, Jianquan & Guo, Xing & Huang, Tingwen & Wang, Zhen, 2019. "Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 153-162.
- Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
- Shi, Chong-Xiao & Yang, Guang-Hong, 2018. "Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 73-88.
- Jiaxi Chen & Junmin Li, 2018. "Fuzzy adaptive iterative learning coordination control of second-order multi-agent systems with imprecise communication topology structure," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 546-556, February.
- Huo, Xin & Ma, Li & Zhao, Xudong & Zong, Guangdeng, 2020. "Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 365(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Haoxiang & Xiong, Shixun & Fu, Zhumu & Tao, Fazhan & Ji, Baofeng, 2024. "High-order disturbance observer-based safe tracking control for a class of uncertain MIMO nonlinear systems with time-varying full state constraints," Applied Mathematics and Computation, Elsevier, vol. 466(C).
- Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
- Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
- Wang, Wei & Huang, Chi & Huang, Chuangxia & Cao, Jinde & Lu, Jianquan & Wang, Li, 2020. "Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses," Applied Mathematics and Computation, Elsevier, vol. 370(C).
- Yang, Wei & Cui, Guozeng & Ma, Qian & Ma, Jiali & Tao, Chongben, 2022. "Finite-time adaptive event-triggered command filtered backstepping control for a QUAV," Applied Mathematics and Computation, Elsevier, vol. 423(C).
- Branislav Rehák & Anna Lynnyk & Volodymyr Lynnyk, 2024. "Synchronization of Multi-Agent Systems Composed of Second-Order Underactuated Agents," Mathematics, MDPI, vol. 12(21), pages 1-19, October.
- Sun, Yuchen & Ma, Shuping, 2021. "Output regulation of switched singular systems based on extended state observer approach," Applied Mathematics and Computation, Elsevier, vol. 399(C).
- Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
- Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Ma, Zheng & Song, Jiasheng & Zhou, Jianping, 2022. "Reliable event-based dissipative filter design for discrete-time system with dynamic quantization and sensor fault," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
- Wang, Zhenhua, 2022. "Consensus of continuous-time agent dynamics with unknown input and communication delays," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
- Ju, Xinxu & Jia, Xianglei & Shi, Xiaocheng & Yu, Shan’en, 2022. "Adaptive output feedback event-triggered tracking control for nonlinear systems with unknown control coefficient," Applied Mathematics and Computation, Elsevier, vol. 432(C).
- Zhengqing Fu & Lanlan Guo, 2019. "Tikhonov Regularized Variable Projection Algorithms for Separable Nonlinear Least Squares Problems," Complexity, Hindawi, vol. 2019, pages 1-9, November.
- Han, Yunrui & Zhao, Ying & Wang, Peng, 2021. "Finite-time rate anti-bump switching control for switched systems," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Xingcheng Pu & Chaowen Xiong & Lianghao Ji & Longlong Zhao, 2019. "Weighted Couple-Group Consensus Analysis of Heterogeneous Multiagent Systems with Cooperative-Competitive Interactions and Time Delays," Complexity, Hindawi, vol. 2019, pages 1-13, March.
- Chen, Boxun & Tang, Ze & Feng, Jianwen, 2024. "Matrix measure-based event-triggered consensus of multi-agent systems with hybrid time delays," Applied Mathematics and Computation, Elsevier, vol. 463(C).
- Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
More about this item
Keywords
Fully distributed; Hybrid adaptive consensus protocols; Non-linearly parameterized multi-agent systems; Iterative learning control Lyapunov–Krasovskii functional;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300436. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.