IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v370y2020ics0096300319309075.html
   My bibliography  Save this article

A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations

Author

Listed:
  • Amiri, Sadegh
  • Hajipour, Mojtaba
  • Baleanu, Dumitru

Abstract

The aim of this paper is to investigate an efficient numerical method based on a novel shifted piecewise cosine basis for solving Volterra–Fredholm integral equations of the second kind. Using operational matrices of integration for the proposed basis functions, this integral equation is transformed into a system of nonlinear algebraic equations. The convergence and error analysis of the proposed method are studied. Some comparative results are provided to verify the efficiency of the presented method.

Suggested Citation

  • Amiri, Sadegh & Hajipour, Mojtaba & Baleanu, Dumitru, 2020. "A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:apmaco:v:370:y:2020:i:c:s0096300319309075
    DOI: 10.1016/j.amc.2019.124915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319309075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirzaee, Farshid & Hadadiyan, Elham, 2016. "Numerical solution of Volterra–Fredholm integral equations via modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 110-123.
    2. Grammont, Laurence & Vasconcelos, Paulo B. & Ahues, Mario, 2016. "A modified iterated projection method adapted to a nonlinear integral equation," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 432-441.
    3. Yousefi, S. & Razzaghi, M., 2005. "Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(1), pages 1-8.
    4. Mirzaee, Farshid & Hoseini, Seyede Fatemeh, 2016. "Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 637-644.
    5. Mirzaee, Farshid & Hadadiyan, Elham, 2015. "Applying the modified block-pulse functions to solve the three-dimensional Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 759-767.
    6. Micula, Sanda, 2015. "An iterative numerical method for Fredholm–Volterra integral equations of the second kind," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 935-942.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karamollahi, Nasibeh & Heydari, Mohammad & Loghmani, Ghasem Barid, 2021. "Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 414-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karamollahi, Nasibeh & Heydari, Mohammad & Loghmani, Ghasem Barid, 2021. "Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 414-432.
    2. Maleknejad, Khosrow & Rashidinia, Jalil & Eftekhari, Tahereh, 2018. "Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 272-285.
    3. Mirzaee, Farshid & Hadadiyan, Elham, 2016. "Numerical solution of Volterra–Fredholm integral equations via modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 110-123.
    4. Bulai, I.M. & De Bonis, M.C. & Laurita, C. & Sagaria, V., 2023. "Modeling metastatic tumor evolution, numerical resolution and growth prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 721-740.
    5. Sahu, P.K. & Ray, S.Saha, 2015. "Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 715-723.
    6. Balcı, Mehmet Ali & Sezer, Mehmet, 2016. "Hybrid Euler–Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 33-41.
    7. Mirzaee, Farshid & Hoseini, Seyede Fatemeh, 2017. "A new collocation approach for solving systems of high-order linear Volterra integro-differential equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 272-282.
    8. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    9. Mirzaee, Farshid & Hadadiyan, Elham, 2017. "Solving system of linear Stratonovich Volterra integral equations via modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 254-264.
    10. Beiglo, H. & Gachpazan, M., 2020. "Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    11. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    12. Reema Gupta & Snehashish Chakraverty, 2024. "Pseudo-Spectral Galerkin Method Using Shifted Vieta-Fibonacci Polynomials for Stochastic Models: Existence, Stability, and Numerical Validation," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-20, December.
    13. Erfanian, Majid & Mansoori, Amin, 2019. "Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 223-237.
    14. Chen, Zhong & Jiang, Wei, 2015. "An efficient algorithm for solving nonlinear Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 614-619.
    15. Pan, Yubin & Huang, Jin & Ma, Yanying, 2019. "Bernstein series solutions of multidimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 149-161.
    16. Nemati, S. & Lima, P.M., 2018. "Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 79-92.
    17. Zare, Farideh & Heydari, Mohammad & Loghmani, Ghasem Barid, 2024. "Convergence analysis of an iterative scheme to solve a family of functional Volterra integral equations," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    18. Mirzaee, Farshid & Samadyar, Nasrin, 2019. "Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 344, pages 191-203.
    19. Mirzaee, Farshid & Hoseini, Seyede Fatemeh, 2016. "Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 637-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:370:y:2020:i:c:s0096300319309075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.