IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp759-767.html
   My bibliography  Save this article

Applying the modified block-pulse functions to solve the three-dimensional Volterra–Fredholm integral equations

Author

Listed:
  • Mirzaee, Farshid
  • Hadadiyan, Elham

Abstract

The main aim of this work is to give further studies for the multi-dimensional integral equations. In this work, we solve special types of the three-dimensional Volterra–Fredholm linear integral equations of the second kind via the modified block-pulse functions. Some theorems are included to show convergence and advantage of the method. We solve some examples to investigate the applicability and simplicity of the method. The numerical results confirm that the method is efficient and simple.

Suggested Citation

  • Mirzaee, Farshid & Hadadiyan, Elham, 2015. "Applying the modified block-pulse functions to solve the three-dimensional Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 759-767.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:759-767
    DOI: 10.1016/j.amc.2015.05.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Sadegh & Hajipour, Mojtaba & Baleanu, Dumitru, 2020. "A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    2. Mirzaee, Farshid & Samadyar, Nasrin, 2019. "Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 344, pages 191-203.
    3. Karamollahi, Nasibeh & Heydari, Mohammad & Loghmani, Ghasem Barid, 2021. "Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 414-432.
    4. Maleknejad, Khosrow & Rashidinia, Jalil & Eftekhari, Tahereh, 2018. "Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 272-285.
    5. Pan, Yubin & Huang, Jin & Ma, Yanying, 2019. "Bernstein series solutions of multidimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 149-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:759-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.