IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p170-d205678.html
   My bibliography  Save this article

The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach

Author

Listed:
  • Tongshuai Liu

    (College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

  • Huanhe Dong

    (College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

In this paper, the Lax pair of the modified nonlinear Schrödinger equation (mNLS) is derived by means of the prolongation structure theory. Based on the obtained Lax pair, the mNLS equation on the half line is analyzed with the assistance of Fokas method. A Riemann-Hilbert problem is formulated in the complex plane with respect to the spectral parameter. According to the initial-boundary values, the spectral function can be defined. Furthermore, the jump matrices and the global relations can be obtained. Finally, the potential q ( x , t ) can be represented by the solution of this Riemann-Hilbert problem.

Suggested Citation

  • Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:170-:d:205678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengshuang Tao & Huanhe Dong, 2017. "Algebro-Geometric Solutions for a Discrete Integrable Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-9, November.
    2. McAnally, Morgan & Ma, Wen-Xiu, 2018. "An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 220-227.
    3. Haoyu Dong & Changna Lu & Hongwei Yang, 2018. "The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations," Mathematics, MDPI, vol. 6(10), pages 1-17, October.
    4. Wen-Xiu Ma & Jie Li & Chaudry Masood Khalique, 2018. "A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions," Complexity, Hindawi, vol. 2018, pages 1-7, December.
    5. Xu, Xi-Xiang, 2015. "A deformed reduced semi-discrete Kaup–Newell equation, the related integrable family and Darboux transformation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 275-283.
    6. Changna Lu & Qianqian Gao & Chen Fu & Hongwei Yang, 2017. "Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-11, November.
    7. Hu, Bei-Bei & Xia, Tie-Cheng & Ma, Wen-Xiu, 2018. "Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 148-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ling & Wen, Xiao-Yong & Liu, Nan & Jiang, Tao & Yuan, Jin-Yun, 2020. "An integrable lattice hierarchy associated with a 4 × 4 matrix spectral problem: N-fold Darboux transformation and dynamical properties," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    2. Shi, Yu-Ren & Yang, Xue-Ying & Tang, Na & Wang, Deng-Shan, 2018. "Effects of Zeeman field on the dynamical instability of flat states for spin-2 Bose–Einstein condensates in an optical lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 39-55.
    3. Hu, Beibei & Lin, Ji & Zhang, Ling, 2022. "On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4×4 matrix Lax pair," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    4. Wu, Zhi-Jia & Tian, Shou-Fu, 2023. "Breather-to-soliton conversions and their mechanisms of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 235-259.
    5. Yongyi Gu & Fanning Meng, 2019. "Searching for Analytical Solutions of the (2+1)-Dimensional KP Equation by Two Different Systematic Methods," Complexity, Hindawi, vol. 2019, pages 1-11, August.
    6. Wen-Xiu Ma, 2023. "Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions," Mathematics, MDPI, vol. 11(22), pages 1-9, November.
    7. Min Guo & Chen Fu & Yong Zhang & Jianxin Liu & Hongwei Yang, 2018. "Study of Ion-Acoustic Solitary Waves in a Magnetized Plasma Using the Three-Dimensional Time-Space Fractional Schamel-KdV Equation," Complexity, Hindawi, vol. 2018, pages 1-17, June.
    8. Lu, Rong-Wu & Xu, Xi-Xiang & Zhang, Ning, 2019. "Construction of solutions for an integrable differential-difference equation by Darboux–Bäcklund transformation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 389-397.
    9. Wen-Xiu Ma, 2019. "Long-Time Asymptotics of a Three-Component Coupled mKdV System," Mathematics, MDPI, vol. 7(7), pages 1-38, June.
    10. Qianqian Yang & Qiulan Zhao & Xinyue Li, 2019. "Explicit Solutions and Conservation Laws for a New Integrable Lattice Hierarchy," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    11. Runhuan Sun & Li Tang & Yanjun Liu, 2022. "Boundary Controller Design for a Class of Horizontal Belt Transmission System with Boundary Vibration Constraint," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    12. Hu, Beibei & Zhang, Ling & Xia, Tiecheng & Zhang, Ning, 2020. "On the Riemann-Hilbert problem of the Kundu equation," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    13. Bo Ren, 2019. "Dynamics Behavior of Lumps and Interaction Solutions of a (3+1)-Dimensional Partial Differential Equation," Complexity, Hindawi, vol. 2019, pages 1-8, April.
    14. Baoyong Guo & Huanhe Dong & Yong Fang, 2019. "Lump Solutions and Interaction Solutions for the Dimensionally Reduced Nonlinear Evolution Equation," Complexity, Hindawi, vol. 2019, pages 1-9, October.
    15. Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    16. Teeranush Suebcharoen & Kanyuta Poochinapan & Ben Wongsaijai, 2022. "Bifurcation Analysis and Numerical Study of Wave Solution for Initial-Boundary Value Problem of the KdV-BBM Equation," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    17. Guan, Xue & Liu, Wenjun & Zhou, Qin & Biswas, Anjan, 2020. "Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    18. Lei Fu & Yaodeng Chen & Hongwei Yang, 2019. "Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    19. Shou-Ting Chen & Wen-Xiu Ma, 2019. "Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations," Complexity, Hindawi, vol. 2019, pages 1-6, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:170-:d:205678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.