IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1221-d296469.html
   My bibliography  Save this article

A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems

Author

Listed:
  • Raudys R. Capdevila

    (Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain
    Dpto. de Educación en Línea, Universidad San Francisco de Quito, Quito 170901, Ecuador)

  • Alicia Cordero

    (Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain)

  • Juan R. Torregrosa

    (Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain)

Abstract

In this work, a new class of iterative methods for solving nonlinear equations is presented and also its extension for nonlinear systems of equations. This family is developed by using a scalar and matrix weight function procedure, respectively, getting sixth-order of convergence in both cases. Several numerical examples are given to illustrate the efficiency and performance of the proposed methods.

Suggested Citation

  • Raudys R. Capdevila & Alicia Cordero & Juan R. Torregrosa, 2019. "A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1221-:d:296469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Artidiello, Santiago & Cordero, Alicia & Torregrosa, Juan R. & Vassileva, Maria P., 2015. "Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1064-1071.
    2. F. Soleymani & M. Sharifi & S. Shateyi & F. Khaksar Haghani, 2014. "A Class of Steffensen-Type Iterative Methods for Nonlinear Systems," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, April.
    3. Candela, V. & Peris, R., 2019. "A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 93-104.
    4. Artidiello, S. & Cordero, Alicia & Torregrosa, Juan R. & Vassileva, M.P., 2017. "Design and multidimensional extension of iterative methods for solving nonlinear problems," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 194-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun, Changbum & Neta, Beny, 2019. "Developing high order methods for the solution of systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 178-190.
    2. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    3. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
    4. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    5. Argyros, Ioannis K. & Behl, Ramandeep & Tenreiro Machado, J.A. & Alshomrani, Ali Saleh, 2019. "Local convergence of iterative methods for solving equations and system of equations using weight function techniques," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 891-902.
    6. Mozafar Rostami & Taher Lotfi & Ali Brahmand, 2019. "A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    7. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    8. Ramandeep Behl & Ioannis K. Argyros & Jose Antonio Tenreiro Machado, 2020. "Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators," Mathematics, MDPI, vol. 8(5), pages 1-12, April.
    9. Alzahrani, Abdullah Khamis Hassan & Behl, Ramandeep & Alshomrani, Ali Saleh, 2018. "Some higher-order iteration functions for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 80-93.
    10. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1221-:d:296469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.