IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p667-d351293.html
   My bibliography  Save this article

Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators

Author

Listed:
  • Ramandeep Behl

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ioannis K. Argyros

    (Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA)

  • Jose Antonio Tenreiro Machado

    (Department of Electrical Engineering, ISEP-Institute of Engineering, Polytechnic of Porto, 431 4294-015 Porto, Portugal)

Abstract

Three methods of sixth order convergence are tackled for approximating the solution of an equation defined on the finitely dimensional Euclidean space. This convergence requires the existence of derivatives of, at least, order seven. However, only derivatives of order one are involved in such methods. Moreover, we have no estimates on the error distances, conclusions about the uniqueness of the solution in any domain, and the convergence domain is not sufficiently large. Hence, these methods have limited usage. This paper introduces a new technique on a general Banach space setting based only the first derivative and Lipschitz type conditions that allow the study of the convergence. In addition, we find usable error distances as well as uniqueness of the solution. A comparison between the convergence balls of three methods, not possible to drive with the previous approaches, is also given. The technique is possible to use with methods available in literature improving, consequently, their applicability. Several numerical examples compare these methods and illustrate the convergence criteria.

Suggested Citation

  • Ramandeep Behl & Ioannis K. Argyros & Jose Antonio Tenreiro Machado, 2020. "Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators," Mathematics, MDPI, vol. 8(5), pages 1-12, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:667-:d:351293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Artidiello, Santiago & Cordero, Alicia & Torregrosa, Juan R. & Vassileva, Maria P., 2015. "Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1064-1071.
    2. Esmaeili, H. & Ahmadi, M., 2015. "An efficient three-step method to solve system of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1093-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    2. Raudys R. Capdevila & Alicia Cordero & Juan R. Torregrosa, 2019. "A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
    3. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    4. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
    5. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    6. Argyros, Ioannis K. & Behl, Ramandeep & Tenreiro Machado, J.A. & Alshomrani, Ali Saleh, 2019. "Local convergence of iterative methods for solving equations and system of equations using weight function techniques," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 891-902.
    7. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    8. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    9. Alzahrani, Abdullah Khamis Hassan & Behl, Ramandeep & Alshomrani, Ali Saleh, 2018. "Some higher-order iteration functions for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 80-93.
    10. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:667-:d:351293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.