IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v330y2018icp170-184.html
   My bibliography  Save this article

Sparse radial basis function approximation with spatially variable shape parameters

Author

Listed:
  • Stolbunov, Valentin
  • Nair, Prasanth B.

Abstract

We present an efficient greedy algorithm for constructing sparse radial basis function (RBF) approximations with spatially variable shape parameters. The central idea is to incrementally construct a sparse approximation by greedily selecting a subset of basis functions from a parameterized dictionary consisting of RBFs centered at all of the training points. An incremental thin QR update scheme based on the Gram–Schmidt process with reorthogonalization is employed to efficiently update the weights of the sparse RBF approximation at each iteration. In addition, the shape parameter of the basis function chosen at each iteration is tuned by minimizing the ℓ2-norm of the training residual, while an approximate leave-one-out error metric is used as the dominant stopping criterion. Numerical studies are presented for a range of test functions to demonstrate that the proposed algorithm enables the efficient construction of RBF approximations with spatially variable shape parameters. It is shown that, compared to a classical RBF model with a single tunable shape parameter and Gaussian process models with an anisotropic Gaussian covariance function, the proposed algorithm can provide significant improvements in accuracy, cost, and sparsity, particularly for high-dimensional datasets.

Suggested Citation

  • Stolbunov, Valentin & Nair, Prasanth B., 2018. "Sparse radial basis function approximation with spatially variable shape parameters," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 170-184.
  • Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:170-184
    DOI: 10.1016/j.amc.2018.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031830095X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dianne O’Leary & Bert Rust, 2013. "Variable projection for nonlinear least squares problems," Computational Optimization and Applications, Springer, vol. 54(3), pages 579-593, April.
    2. Frank, Alvaro & Fabregat-Traver, Diego & Bientinesi, Paolo, 2016. "Large-scale linear regression: Development of high-performance routines," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 411-421.
    3. Kadalbajoo, Mohan K. & Kumar, Alpesh & Tripathi, Lok Pati, 2015. "A radial basis functions based finite differences method for wave equation with an integral condition," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 8-16.
    4. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    5. Golbabai, Ahmad & Nikpour, Ahmad, 2015. "Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 567-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuling & Li, Xiaolin, 2016. "Radial basis functions and level set method for image segmentation using partial differential equation," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 29-40.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    4. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    5. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    6. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    7. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    8. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Kovács, Péter & Fekete, Andrea M., 2019. "Nonlinear least-squares spline fitting with variable knots," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 490-501.
    10. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    11. Robert RUSU & Constantin AVRAM, 2022. "Deep Learning Systems Integrated into the Digital Strategy of a Company Involved in e-commerce," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 5-10.
    12. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    13. Koffi, Siméon, 2022. "Prévision de l’inflation en Côte D’ivoire : Analyse Comparée des Modèles Arima, Holt-Winters, et Lstm [Inflation Forecasting in Côte D'Ivoire: A Comparative Analysis of the Arima, Holt-Winters, and," MPRA Paper 113961, University Library of Munich, Germany.
    14. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    15. Zaheer-ud-Din & Muhammad Ahsan & Masood Ahmad & Wajid Khan & Emad E. Mahmoud & Abdel-Haleem Abdel-Aty, 2020. "Meshless Analysis of Nonlocal Boundary Value Problems in Anisotropic and Inhomogeneous Media," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
    16. Ben Moews & J. Michael Herrmann & Gbenga Ibikunle, 2018. "Lagged correlation-based deep learning for directional trend change prediction in financial time series," Papers 1811.11287, arXiv.org, revised Nov 2018.
    17. Green, Gareth & Richards, Timothy, 2016. "Interpreting Results of Demand Estimation from Machine Learning Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236147, Agricultural and Applied Economics Association.
    18. Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
    19. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    20. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:170-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.