IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v330y2018icp134-142.html
   My bibliography  Save this article

The kite graph is determined by its adjacency spectrum

Author

Listed:
  • Topcu, Hatice
  • Sorgun, Sezer

Abstract

The kite graph is obtained by appending the complete graph with p vertices to a pendant vertex of the path graph with q vertices. In this paper, we prove that the kite graph is determined by its adjacency spectrum for all p and q.

Suggested Citation

  • Topcu, Hatice & Sorgun, Sezer, 2018. "The kite graph is determined by its adjacency spectrum," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 134-142.
  • Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:134-142
    DOI: 10.1016/j.amc.2018.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, E.R. & Haemers, W.H., 2002. "Which Graphs are Determined by their Spectrum?," Discussion Paper 2002-66, Tilburg University, Center for Economic Research.
    2. Das, Kinkar Ch. & Liu, Muhuo, 2017. "Kite graphs determined by their spectra," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 74-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Xingyu & Wang, Jianfeng, 2022. "Spectral determination of graphs with one positive anti-adjacency eigenvalue," Applied Mathematics and Computation, Elsevier, vol. 422(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
    2. Cui, Shu-Yu & Tian, Gui-Xian, 2017. "The spectra and the signless Laplacian spectra of graphs with pockets," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 363-371.
    3. Lei, Xingyu & Wang, Jianfeng, 2022. "Spectral determination of graphs with one positive anti-adjacency eigenvalue," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    4. Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
    5. Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.
    6. van Dam, E.R., 2008. "The spectral excess theorem for distance-regular graphs : A global (over)view," Other publications TiSEM 35daf99b-ad28-4e21-8b1f-6, Tilburg University, School of Economics and Management.
    7. van Dam, E.R. & Haemers, W.H. & Koolen, J.H., 2006. "Cospectral Graphs and the Generalized Adjacency Matrix," Discussion Paper 2006-31, Tilburg University, Center for Economic Research.
    8. Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Discussion Paper 2009-76, Tilburg University, Center for Economic Research.
    9. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    10. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Other publications TiSEM 2478f418-ae83-4ac3-8742-2, Tilburg University, School of Economics and Management.
    11. van Dam, E.R. & Haemers, W.H., 2007. "Developments on Spectral Characterizations of Graphs," Discussion Paper 2007-33, Tilburg University, Center for Economic Research.
    12. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Discussion Paper 2010-47, Tilburg University, Center for Economic Research.
    13. Al-Yakoob, Salem & Kanso, Ali & Stevanović, Dragan, 2022. "On Hosoya’s dormants and sprouts," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    14. Mao, Ding & Wang, Peng & Fang, Yi-Ping & Ni, Long, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Applied Energy, Elsevier, vol. 369(C).
    15. Wang, Xiangrong & Trajanovski, Stojan & Kooij, Robert E. & Van Mieghem, Piet, 2016. "Degree distribution and assortativity in line graphs of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 343-356.
    16. van Dam, E.R. & Omidi, G.R., 2011. "Graphs whose normalized laplacian has three eigenvalues," Other publications TiSEM d3b7fa76-22b5-4a9a-8706-a, Tilburg University, School of Economics and Management.
    17. Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    18. Chesnokov, A.A. & Haemers, W.H., 2005. "Regularity and the Generalized Adjacency Spectra of Graphs," Other publications TiSEM abb5a199-ef7c-4401-9eff-f, Tilburg University, School of Economics and Management.
    19. Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.
    20. Fei Wen & You Zhang & Muchun Li, 2019. "Spectra of Subdivision Vertex-Edge Join of Three Graphs," Mathematics, MDPI, vol. 7(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:134-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.