Spectral determination of graphs with one positive anti-adjacency eigenvalue
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.126995
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- van Dam, E.R. & Haemers, W.H., 2007.
"Developments on Spectral Characterizations of Graphs,"
Discussion Paper
2007-33, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Haemers, W.H., 2009. "Developments on spectral characterizations of graphs," Other publications TiSEM 7b5eb8d4-dfc2-4392-bb3f-4, Tilburg University, School of Economics and Management.
- Haemers, Willem H. & Sorgun, Sezer & Topcu, Hatice, 2019. "On the spectral characterization of mixed extensions of P 3," Other publications TiSEM d3aad4e5-24f2-499d-a57a-9, Tilburg University, School of Economics and Management.
- van Dam, E.R. & Haemers, W.H., 2002.
"Which Graphs are Determined by their Spectrum?,"
Discussion Paper
2002-66, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Haemers, W.H., 2003. "Which graphs are determined by their spectrum?," Other publications TiSEM a9a1857e-13ce-4da7-bcca-b, Tilburg University, School of Economics and Management.
- Abiad, Aida & Alfaro, Carlos A., 2021. "Enumeration of cospectral and coinvariant graphs," Applied Mathematics and Computation, Elsevier, vol. 408(C).
- Topcu, Hatice & Sorgun, Sezer, 2018. "The kite graph is determined by its adjacency spectrum," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 134-142.
- Das, Kinkar Ch. & Liu, Muhuo, 2017. "Kite graphs determined by their spectra," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 74-78.
- Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
- Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
- Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Discussion Paper 2009-76, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Other publications TiSEM 2478f418-ae83-4ac3-8742-2, Tilburg University, School of Economics and Management.
- van Dam, E.R. & Haemers, W.H., 2010.
"An Odd Characterization of the Generalized Odd Graphs,"
Discussion Paper
2010-47, Tilburg University, Center for Economic Research.
- van Dam, E.R. & Haemers, W.H., 2011. "An odd characterization of the generalized odd graphs," Other publications TiSEM e8bf846c-d5d1-4492-8b6e-6, Tilburg University, School of Economics and Management.
- Al-Yakoob, Salem & Kanso, Ali & Stevanović, Dragan, 2022. "On Hosoya’s dormants and sprouts," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Cui, Shu-Yu & Tian, Gui-Xian, 2017. "The spectra and the signless Laplacian spectra of graphs with pockets," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 363-371.
- van Dam, E.R. & Omidi, G.R., 2011. "Graphs whose normalized laplacian has three eigenvalues," Other publications TiSEM d3b7fa76-22b5-4a9a-8706-a, Tilburg University, School of Economics and Management.
- Xue, Jie & Liu, Shuting & Shu, Jinlong, 2018. "The complements of path and cycle are determined by their distance (signless) Laplacian spectra," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 137-143.
- Yuan, Bo-Jun & Wang, Yi & Xu, Jing, 2020. "Characterizing the mixed graphs with exactly one positive eigenvalue and its application to mixed graphs determined by their H-spectra," Applied Mathematics and Computation, Elsevier, vol. 380(C).
- Fei Wen & Qiongxiang Huang & Xueyi Huang & Fenjin Liu, 2015. "The spectral characterization of wind-wheel graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(5), pages 613-631, October.
- Topcu, Hatice & Sorgun, Sezer, 2018. "The kite graph is determined by its adjacency spectrum," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 134-142.
- Maiorino, Enrico & Rizzi, Antonello & Sadeghian, Alireza & Giuliani, Alessandro, 2017. "Spectral reconstruction of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 804-817.
- Saeree Wananiyakul & Jörn Steuding & Janyarak Tongsomporn, 2022. "How to Distinguish Cospectral Graphs," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
- Fei Wen & Qiongxiang Huang & Xueyi Huang & Fenjin Liu, 2018. "On the Laplacian spectral characterization of Π-shape trees," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(3), pages 397-411, September.
- Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Other publications TiSEM 386fd2ad-65f2-42b6-9dfc-1, Tilburg University, School of Economics and Management.
- Xihe Li & Ligong Wang & Shangyuan Zhang, 2018. "The Signless Laplacian Spectral Radius of Some Strongly Connected Digraphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(1), pages 113-127, March.
- Tianyi Bu & Lizhu Sun & Wenzhe Wang & Jiang Zhou, 2014. "Main Q-eigenvalues and generalized Q-cospectrality of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 45(4), pages 531-538, August.
- Lizhu Sun & Wenzhe Wang & Jiang Zhou & Changjiang Bu, 2015. "Laplacian spectral characterization of some graph join," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(3), pages 279-286, June.
- Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000819. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.