IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v445y2016icp343-356.html
   My bibliography  Save this article

Degree distribution and assortativity in line graphs of complex networks

Author

Listed:
  • Wang, Xiangrong
  • Trajanovski, Stojan
  • Kooij, Robert E.
  • Van Mieghem, Piet

Abstract

Topological characteristics of links of complex networks influence the dynamical processes executed on networks triggered by links, such as cascading failures triggered by links in power grids and epidemic spread due to link infection. The line graph transforms links in the original graph into nodes. In this paper, we investigate how graph metrics in the original graph are mapped into those for its line graph. In particular, we study the degree distribution and the assortativity of a graph and its line graph. Specifically, we show, both analytically and numerically, the degree distribution of the line graph of an Erdős–Rényi graph follows the same distribution as its original graph. We derive a formula for the assortativity of line graphs and indicate that the assortativity of a line graph is not linearly related to its original graph. Additionally, line graphs of various graphs, e.g. Erdős–Rényi graphs, scale-free graphs, show positive assortativity. In contrast, we find certain types of trees and non-trees whose line graphs have negative assortativity.

Suggested Citation

  • Wang, Xiangrong & Trajanovski, Stojan & Kooij, Robert E. & Van Mieghem, Piet, 2016. "Degree distribution and assortativity in line graphs of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 343-356.
  • Handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:343-356
    DOI: 10.1016/j.physa.2015.10.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009899
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, E.R. & Haemers, W.H., 2002. "Which Graphs are Determined by their Spectrum?," Discussion Paper 2002-66, Tilburg University, Center for Economic Research.
    2. van Dam, E.R. & Kooij, R.E., 2006. "The Minimal Spectral Radius of Graphs with a Given Diameter," Discussion Paper 2006-102, Tilburg University, Center for Economic Research.
    3. H. Wang & W. Winterbach & P. Mieghem, 2011. "Assortativity of complementary graphs," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 83(2), pages 203-214, September.
    4. Krawczyk, M.J. & Muchnik, L. & Mańka-Krasoń, A. & Kułakowski, K., 2011. "Line graphs as social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2611-2618.
    5. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    6. P. Van Mieghem & H. Wang & X. Ge & S. Tang & F. A. Kuipers, 2010. "Influence of assortativity and degree-preserving rewiring on the spectra of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(4), pages 643-652, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    2. Chu, J. & Nadarajah, S., 2018. "Estimating order statistics of network degrees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 869-885.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
    4. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    5. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    6. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    7. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    8. Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.
    9. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    12. van Dam, E.R., 2008. "The spectral excess theorem for distance-regular graphs : A global (over)view," Other publications TiSEM 35daf99b-ad28-4e21-8b1f-6, Tilburg University, School of Economics and Management.
    13. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    14. Dong, Zhengcheng & Tian, Meng & Liang, Jiaqi & Fang, Yanjun & Lu, Yuxin, 2019. "Research on the connection radius of dependency links in interdependent spatial networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 555-564.
    15. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    16. B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
    17. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    18. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    19. Su, Ran & Fang, Zhi-Ming & Hao, Qing-Yi & Sheng, Chun & Fu, Yuan-Jiao, 2024. "The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    20. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:343-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.