IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3168-d905597.html
   My bibliography  Save this article

Spectra of Complemented Triangulation Graphs

Author

Listed:
  • Jia Wei

    (School of Education, Lanzhou University of Arts and Science, Lanzhou 730000, China)

  • Jing Wang

    (School of Education, Lanzhou University of Arts and Science, Lanzhou 730000, China
    School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China)

Abstract

The complemented triangulation graph of a graph G , denoted by CT ( G ) , is defined as the graph obtained from G by adding, for each edge u v of G , a new vertex whose neighbours are the vertices of G other than u and v . In this paper, we first obtain the A -spectra, the L -spectra, and the Q -spectra of the complemented triangulation graphs of regular graphs. By using the results, we construct infinitely many pairs of A -cospectral graphs, L -cospectral graphs, and Q -cospectral graphs. We also obtain the number of spanning trees and the Kirchhoff index of the complemented triangulation graphs of regular graphs.

Suggested Citation

  • Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3168-:d:905597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Dam, E.R. & Haemers, W.H., 2002. "Which Graphs are Determined by their Spectrum?," Discussion Paper 2002-66, Tilburg University, Center for Economic Research.
    2. Fei Wen & You Zhang & Muchun Li, 2019. "Spectra of Subdivision Vertex-Edge Join of Three Graphs," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    3. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    4. Jia-Bao Liu & Yan Bao & Wu-Ting Zheng & Sakander Hayat, 2021. "NETWORK COHERENCE ANALYSIS ON A FAMILY OF NESTED WEIGHTED n-POLYGON NETWORKS," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyu Shi & Qiang Tang, 2023. "RETRACTED ARTICLE: Cost-optimized data placement strategy for social network with security awareness in edge-cloud computing environment," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-15, January.
    2. Xiaoyun Yang & Ligong Wang, 2020. "Laplacian Spectral Characterization of (Broken) Dandelion Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 915-933, September.
    3. Haemers, W.H., 2005. "Matrices and Graphs," Other publications TiSEM 94b6bd28-71e7-41d3-b978-c, Tilburg University, School of Economics and Management.
    4. van Dam, E.R., 2008. "The spectral excess theorem for distance-regular graphs : A global (over)view," Other publications TiSEM 35daf99b-ad28-4e21-8b1f-6, Tilburg University, School of Economics and Management.
    5. B. R. Rakshith, 2022. "Signless Laplacian spectral characterization of some disjoint union of graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 233-245, March.
    6. van Dam, E.R. & Haemers, W.H. & Koolen, J.H., 2006. "Cospectral Graphs and the Generalized Adjacency Matrix," Discussion Paper 2006-31, Tilburg University, Center for Economic Research.
    7. Haemers, W.H. & Ramezani, F., 2009. "Graphs Cospectral with Kneser Graphs," Discussion Paper 2009-76, Tilburg University, Center for Economic Research.
    8. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    9. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    10. Chesnokov, A.A. & Haemers, W.H., 2005. "Regularity and the Generalized Adjacency Spectra of Graphs," Discussion Paper 2005-124, Tilburg University, Center for Economic Research.
    11. van Dam, E.R. & Haemers, W.H., 2010. "An Odd Characterization of the Generalized Odd Graphs," Other publications TiSEM 2478f418-ae83-4ac3-8742-2, Tilburg University, School of Economics and Management.
    12. Jia-Bao Liu & Muhammad Kashif Shafiq & Haidar Ali & Asim Naseem & Nayab Maryam & Syed Sheraz Asghar, 2019. "Topological Indices of m th Chain Silicate Graphs," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    13. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
    14. van Dam, E.R. & Haemers, W.H., 2007. "Developments on Spectral Characterizations of Graphs," Discussion Paper 2007-33, Tilburg University, Center for Economic Research.
    15. Li-Mei Qi & Hao-Jie Zhu & Xiao-Zhe Geng & Lei Fang, 2023. "RETRACTED ARTICLE: Premium rate making of jujube revenue insurance in Xinjiang Aksu Region based on the mixed Copula-stochastic optimization model," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-22, April.
    16. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    17. Li Zhang & Jing Zhao & Jia-Bao Liu & Salama Nagy Daoud, 2019. "Resistance Distance in the Double Corona Based on R -Graph," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    18. Singh, Ranveer & Wankhede, Hitesh, 2024. "A note on graphs with purely imaginary per-spectrum," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    19. Comellas, Francesc & Diaz-Lopez, Jordi, 2008. "Spectral reconstruction of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6436-6442.
    20. Sajjad, Wasim & Sardar, Muhammad Shoaib & Pan, Xiang-Feng, 2024. "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron," Applied Mathematics and Computation, Elsevier, vol. 461(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3168-:d:905597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.