IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v323y2018icp75-85.html
   My bibliography  Save this article

Some transformations on multiplicative eccentricity resistance-distance and their applications

Author

Listed:
  • Hong, Yunchao
  • Zhu, Zhongxun
  • Luo, Amu

Abstract

For a connected graph G, the multiplicative eccentricity resistance-distance is defined as ξR*(G)=∑{x,y}⊂V(G)ɛG(x)·ɛG(y)RG(x,y), where εG( · ) is the eccentricity of the corresponding vertex and RG(x, y) is the effective resistance between vertices x and y in G. A connected graph G is called a cactus if any two of its cycles have at most one common vertex. Let Cat(n; t) be the set of cacti possessing n vertices and t cycles, where 0≤t≤n−12. In this paper, we introduce some edge-grafting transformations which decrease ξR*(G). As their applications, the extremal graphs with minimum and second minimum ξR*(G)-value in Cat(n; t) are characterized.

Suggested Citation

  • Hong, Yunchao & Zhu, Zhongxun & Luo, Amu, 2018. "Some transformations on multiplicative eccentricity resistance-distance and their applications," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 75-85.
  • Handle: RePEc:eee:apmaco:v:323:y:2018:i:c:p:75-85
    DOI: 10.1016/j.amc.2017.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jing & Li, Shuchao & Li, Xuechao, 2016. "The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 324-334.
    2. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
    2. Liu, Jia-Bao & Zhao, Jing & Cai, Zheng-Qun, 2020. "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.
    4. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    5. Jia-Bao Liu & Muhammad Kashif Shafiq & Haidar Ali & Asim Naseem & Nayab Maryam & Syed Sheraz Asghar, 2019. "Topological Indices of m th Chain Silicate Graphs," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    6. Wenyu Shi & Qiang Tang, 2023. "RETRACTED ARTICLE: Cost-optimized data placement strategy for social network with security awareness in edge-cloud computing environment," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-15, January.
    7. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    8. Li Zhang & Jing Zhao & Jia-Bao Liu & Salama Nagy Daoud, 2019. "Resistance Distance in the Double Corona Based on R -Graph," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    9. Sajjad, Wasim & Sardar, Muhammad Shoaib & Pan, Xiang-Feng, 2024. "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    10. Praba, B. & Saranya, R., 2020. "Application of the graph cellular automaton in generating languages," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 111-121.
    11. He, Weihua & Li, Hao & Xiao, Shuofa, 2017. "On the minimum Kirchhoff index of graphs with a given vertex k-partiteness and edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 313-318.
    12. Jian Lu & Shu-Bo Chen & Jia-Bao Liu & Xiang-Feng Pan & Ying-Jie Ji, 2019. "Further Results on the Resistance-Harary Index of Unicyclic Graphs," Mathematics, MDPI, vol. 7(2), pages 1-13, February.
    13. Sardar, Muhammad Shoaib & Pan, Xiang-Feng & Xu, Si-Ao, 2020. "Computation of resistance distance and Kirchhoff index of the two classes of silicate networks," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    14. Ma, Xiaoling & Bian, Hong, 2019. "The normalized Laplacians, degree-Kirchhoff index and the spanning trees of hexagonal Möbius graphs," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 33-46.
    15. Li, Zhemin & Xie, Zheng & Li, Jianping & Pan, Yingui, 2020. "Resistance distance-based graph invariants and spanning trees of graphs derived from the strong prism of a star," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    16. Li, Deqiong & Hou, Yaoping, 2017. "The normalized Laplacian spectrum of quadrilateral graphs and its applications," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 180-188.
    17. Fang Gao & Xiaoxin Li & Kai Zhou & Jia-Bao Liu, 2018. "The Extremal Graphs of Some Topological Indices with Given Vertex k -Partiteness," Mathematics, MDPI, vol. 6(11), pages 1-11, November.
    18. Huang, Jing & Li, Shuchao, 2018. "The normalized Laplacians on both k-triangle graph and k-quadrilateral graph with their applications," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 213-225.
    19. Li, Danyi & Yan, Weigen, 2023. "Counting spanning trees with a Kekulé structure in linear hexagonal chains," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    20. Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:323:y:2018:i:c:p:75-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.