IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i1p42-d194881.html
   My bibliography  Save this article

Topological Indices of m th Chain Silicate Graphs

Author

Listed:
  • Jia-Bao Liu

    (School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China)

  • Muhammad Kashif Shafiq

    (Department of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, Pakistan)

  • Haidar Ali

    (Department of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, Pakistan)

  • Asim Naseem

    (Department of Mathematics, GC University Lahore, Lahore 54000, Pakistan)

  • Nayab Maryam

    (Department of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, Pakistan)

  • Syed Sheraz Asghar

    (Department of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, Pakistan)

Abstract

A topological index is a numerical representation of a chemical structure, while a topological descriptor correlates certain physico-chemical characteristics of underlying chemical compounds besides its numerical representation. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, and biological activity are determined by the chemical applications of graph theory. The biological activity of chemical compounds can be constructed by the help of topological indices such as atom-bond connectivity (ABC), Randić, and geometric arithmetic (GA). In this paper, Randić, atom bond connectivity (ABC), Zagreb, geometric arithmetic (GA), ABC 4 , and GA 5 indices of the m th chain silicate S L ( m , n ) network are determined.

Suggested Citation

  • Jia-Bao Liu & Muhammad Kashif Shafiq & Haidar Ali & Asim Naseem & Nayab Maryam & Syed Sheraz Asghar, 2019. "Topological Indices of m th Chain Silicate Graphs," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:42-:d:194881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bača, Martin & Horváthová, Jarmila & Mokrišová, Martina & Suhányiová, Alžbeta, 2015. "On topological indices of fullerenes," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 154-161.
    2. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    2. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
    3. Wenyu Shi & Qiang Tang, 2023. "RETRACTED ARTICLE: Cost-optimized data placement strategy for social network with security awareness in edge-cloud computing environment," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-15, January.
    4. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    5. Li Zhang & Jing Zhao & Jia-Bao Liu & Salama Nagy Daoud, 2019. "Resistance Distance in the Double Corona Based on R -Graph," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    6. Sajjad, Wasim & Sardar, Muhammad Shoaib & Pan, Xiang-Feng, 2024. "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    7. Liu, Jia-Bao & Zhao, Jing & Cai, Zheng-Qun, 2020. "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Praba, B. & Saranya, R., 2020. "Application of the graph cellular automaton in generating languages," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 111-121.
    9. Jian Lu & Shu-Bo Chen & Jia-Bao Liu & Xiang-Feng Pan & Ying-Jie Ji, 2019. "Further Results on the Resistance-Harary Index of Unicyclic Graphs," Mathematics, MDPI, vol. 7(2), pages 1-13, February.
    10. Sardar, Muhammad Shoaib & Pan, Xiang-Feng & Xu, Si-Ao, 2020. "Computation of resistance distance and Kirchhoff index of the two classes of silicate networks," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    11. Shahid Imran & Muhammad Kamran Siddiqui & Muhammad Imran & Muhammad Faisal Nadeem, 2018. "Computing Topological Indices and Polynomials for Line Graphs," Mathematics, MDPI, vol. 6(8), pages 1-10, August.
    12. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.
    13. Fang Gao & Xiaoxin Li & Kai Zhou & Jia-Bao Liu, 2018. "The Extremal Graphs of Some Topological Indices with Given Vertex k -Partiteness," Mathematics, MDPI, vol. 6(11), pages 1-11, November.
    14. Hong, Yunchao & Zhu, Zhongxun & Luo, Amu, 2018. "Some transformations on multiplicative eccentricity resistance-distance and their applications," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 75-85.
    15. Jia Wei & Jing Wang, 2022. "Spectra of Complemented Triangulation Graphs," Mathematics, MDPI, vol. 10(17), pages 1-9, September.
    16. Li Zhang & Jing Zhao & Jia-Bao Liu & Micheal Arockiaraj, 2018. "Resistance Distance in H -Join of Graphs G 1 , G 2 , … , G k," Mathematics, MDPI, vol. 6(12), pages 1-10, November.
    17. Yang, Yujun & Cao, Yuliang & Yao, Haiyuan & Li, Jing, 2018. "Solution to a conjecture on a Nordhaus–Gaddum type result for the Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 241-249.
    18. Wang, Daohua & Zeng, Cheng & Zhao, Zixuan & Wu, Zhiqiang & Xue, Yumei, 2023. "Kirchhoff index of a class of polygon networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Imran, Muhammad & Sabeel-e-Hafi, & Gao, Wei & Reza Farahani, Mohammad, 2017. "On topological properties of sierpinski networks," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 199-204.
    20. Mohammed Salaheldeen Abdelgader & Chunxiang Wang & Sarra Abdalrhman Mohammed, 2018. "Computation of Topological Indices of Some Special Graphs," Mathematics, MDPI, vol. 6(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:42-:d:194881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.