IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v289y2016icp324-334.html
   My bibliography  Save this article

The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains

Author

Listed:
  • Huang, Jing
  • Li, Shuchao
  • Li, Xuechao

Abstract

Let Bn be a linear polyomino chain with n squares. In this paper, according to the decomposition theorem of normalized Laplacian polynomial, we obtain that the normalized Laplacian spectrum of Bn consists of the eigenvalues of two symmetric tridiagonal matrices of order n+1. Together with the relationship between the roots and coefficients of the characteristic polynomials of the above two matrices, explicit closed formulas of the degree-Kirchhoff index and the number of spanning trees of Bn are derived. Furthermore, it is interesting to find that the degree-Kirchhoff index of Bn is approximately one half of its Gutman index.

Suggested Citation

  • Huang, Jing & Li, Shuchao & Li, Xuechao, 2016. "The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 324-334.
  • Handle: RePEc:eee:apmaco:v:289:y:2016:i:c:p:324-334
    DOI: 10.1016/j.amc.2016.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316303332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Pinchen & Zhang, Zhongzhi & Comellas, Francesc, 2016. "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1123-1129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jia-Bao & Zhao, Jing & Cai, Zheng-Qun, 2020. "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Li, Danyi & Yan, Weigen, 2023. "Counting spanning trees with a Kekulé structure in linear hexagonal chains," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    3. He, Weihua & Li, Hao & Xiao, Shuofa, 2017. "On the minimum Kirchhoff index of graphs with a given vertex k-partiteness and edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 313-318.
    4. Yasir Ahmad & Umar Ali & Daniele Ettore Otera & Xiang-Feng Pan, 2024. "Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices," Mathematics, MDPI, vol. 12(9), pages 1-19, April.
    5. Ma, Xiaoling & Bian, Hong, 2019. "The normalized Laplacians, degree-Kirchhoff index and the spanning trees of hexagonal Möbius graphs," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 33-46.
    6. Jia-Bao Liu & Jing Zhao & Zhongxun Zhu & Jinde Cao, 2019. "On the Normalized Laplacian and the Number of Spanning Trees of Linear Heptagonal Networks," Mathematics, MDPI, vol. 7(4), pages 1-15, March.
    7. Li, Zhemin & Xie, Zheng & Li, Jianping & Pan, Yingui, 2020. "Resistance distance-based graph invariants and spanning trees of graphs derived from the strong prism of a star," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. Huang, Jing & Li, Shuchao, 2018. "The normalized Laplacians on both k-triangle graph and k-quadrilateral graph with their applications," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 213-225.
    9. Li, Deqiong & Hou, Yaoping, 2017. "The normalized Laplacian spectrum of quadrilateral graphs and its applications," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 180-188.
    10. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.
    11. Hong, Yunchao & Zhu, Zhongxun & Luo, Amu, 2018. "Some transformations on multiplicative eccentricity resistance-distance and their applications," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 75-85.
    12. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shaowei & Das, Kinkar Ch., 2019. "On the second largest normalized Laplacian eigenvalue of graphs," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 531-541.
    2. Wang, Chengyong & Guo, Ziliang & Li, Shuchao, 2018. "Expected hitting times for random walks on the k-triangle graph and their applications," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 698-710.
    3. Li, Deqiong & Hou, Yaoping, 2017. "The normalized Laplacian spectrum of quadrilateral graphs and its applications," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 180-188.
    4. Cui, Shu-Yu & Tian, Gui-Xian, 2017. "The spectra and the signless Laplacian spectra of graphs with pockets," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 363-371.
    5. Huang, Jing & Li, Shuchao, 2018. "The normalized Laplacians on both k-triangle graph and k-quadrilateral graph with their applications," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 213-225.
    6. Liao, Yunhua & Aziz-Alaoui, M.A. & Zhao, Junchan & Hou, Yaoping, 2019. "The behavior of Tutte polynomials of graphs under five graph operations and its applications," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Palacios, José Luis & Markowsky, Greg, 2021. "Kemeny’s constant and the Kirchhoff index for the cluster of highly symmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    8. Xie, Pinchen & Yang, Bingjia & Zhang, Zhongzhi & Andrade, Roberto F.S., 2018. "Exact evaluation of the causal spectrum and localization properties of electronic states on a scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 40-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:289:y:2016:i:c:p:324-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.