IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v316y2018icp52-72.html
   My bibliography  Save this article

A QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization

Author

Listed:
  • Li, Jianling
  • Yang, Zhenping

Abstract

In this paper, we present a QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization. At each iteration, three systems of linear equations with the same coefficient matrix are solved to yield search direction; the nonmonotone line search ensures that the objective function or constraint violation function is sufficiently reduced. There is no feasibility restoration phase in our algorithm, which is necessary for filter methods. The algorithm possesses global convergence as well as superlinear convergence under some mild conditions including a weaker assumption of positive definiteness. Finally, some preliminary numerical results are reported.

Suggested Citation

  • Li, Jianling & Yang, Zhenping, 2018. "A QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 52-72.
  • Handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:52-72
    DOI: 10.1016/j.amc.2017.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jianling & Huang, Renshuai & Jian, Jinbao, 2015. "A superlinearly convergent QP-free algorithm for mathematical programs with equilibrium constraints," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 885-903.
    2. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.
    3. J. B. Jian, 2006. "New Sequential Quadratically-Constrained Quadratic Programming Method of Feasible Directions and Its Convergence Rate," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 109-130, April.
    4. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    5. Jian, Jin-Bao & Tang, Chun-Ming & Zheng, Hai-Yan, 2010. "Sequential quadratically constrained quadratic programming norm-relaxed algorithm of strongly sub-feasible directions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 645-657, February.
    6. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    7. Jian, Jin-Bao & Pan, Hua-Qin & Tang, Chun-Ming & Li, Jian-Ling, 2015. "A strongly sub-feasible primal-dual quasi interior-point algorithm for nonlinear inequality constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 560-578.
    8. Chungen Shen & Wenjuan Xue & Dingguo Pu, 2010. "An infeasible nonmonotone SSLE algorithm for nonlinear programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 103-124, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    2. Jian, Jin-Bao & Pan, Hua-Qin & Tang, Chun-Ming & Li, Jian-Ling, 2015. "A strongly sub-feasible primal-dual quasi interior-point algorithm for nonlinear inequality constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 560-578.
    3. Tang, Chun-ming & Jian, Jin-bao, 2012. "Strongly sub-feasible direction method for constrained optimization problems with nonsmooth objective functions," European Journal of Operational Research, Elsevier, vol. 218(1), pages 28-37.
    4. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    5. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    6. Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
    7. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    8. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
    9. A. L. Dontchev, 1998. "A Proof of the Necessity of Linear Independence Condition and Strong Second-Order Sufficient Optimality Condition for Lipschitzian Stability in Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 467-473, August.
    10. B. S. Mordukhovich & M. E. Sarabi, 2016. "Second-Order Analysis of Piecewise Linear Functions with Applications to Optimization and Stability," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 504-526, November.
    11. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    12. Jie Jiang & Xiaojun Chen & Zhiping Chen, 2020. "Quantitative analysis for a class of two-stage stochastic linear variational inequality problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 431-460, June.
    13. Birbil, S.I. & Gürkan, G. & Listeş, O., 2004. "Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis," ERIM Report Series Research in Management ERS-2004-016-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. A. F. Izmailov & M. V. Solodov, 2023. "Convergence rate estimates for penalty methods revisited," Computational Optimization and Applications, Springer, vol. 85(3), pages 973-992, July.
    15. B. S. Mordukhovich & M. E. Sarabi, 2017. "Stability Analysis for Composite Optimization Problems and Parametric Variational Systems," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 554-577, February.
    16. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    17. Nguyen Thanh Qui, 2012. "Nonlinear Perturbations of Polyhedral Normal Cone Mappings and Affine Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 98-122, April.
    18. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    19. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    20. Boris Mordukhovich, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 35-42, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:52-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.