IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v98y1998i2d10.1023_a1022649803808.html
   My bibliography  Save this article

A Proof of the Necessity of Linear Independence Condition and Strong Second-Order Sufficient Optimality Condition for Lipschitzian Stability in Nonlinear Programming

Author

Listed:
  • A. L. Dontchev

    (Mathematical Reviews)

Abstract

For a nonlinear programming problem with a canonical perturbations, we give an elementary proof of the following result: If the Karush–Kuhn–Tucker map is locally single-valued and Lipschitz continuous, then the linear independence condition for the gradients of the active constraints and the strong second-order sufficient optimality condition hold.

Suggested Citation

  • A. L. Dontchev, 1998. "A Proof of the Necessity of Linear Independence Condition and Strong Second-Order Sufficient Optimality Condition for Lipschitzian Stability in Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 467-473, August.
  • Handle: RePEc:spr:joptap:v:98:y:1998:i:2:d:10.1023_a:1022649803808
    DOI: 10.1023/A:1022649803808
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022649803808
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022649803808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CORNET, Bernard & LAROQUE, Guy, 1987. "Lipschitz properties of solutions in mathematical programming," LIDAM Reprints CORE 847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel L. McFadden & Mogens Fosgerau, 2012. "A theory of the perturbed consumer with general budgets," NBER Working Papers 17953, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    2. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    3. Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
    4. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    5. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
    6. B. S. Mordukhovich & M. E. Sarabi, 2016. "Second-Order Analysis of Piecewise Linear Functions with Applications to Optimization and Stability," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 504-526, November.
    7. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    8. Jie Jiang & Xiaojun Chen & Zhiping Chen, 2020. "Quantitative analysis for a class of two-stage stochastic linear variational inequality problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 431-460, June.
    9. Birbil, S.I. & Gürkan, G. & Listeş, O., 2004. "Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis," ERIM Report Series Research in Management ERS-2004-016-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. A. F. Izmailov & M. V. Solodov, 2023. "Convergence rate estimates for penalty methods revisited," Computational Optimization and Applications, Springer, vol. 85(3), pages 973-992, July.
    11. B. S. Mordukhovich & M. E. Sarabi, 2017. "Stability Analysis for Composite Optimization Problems and Parametric Variational Systems," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 554-577, February.
    12. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    13. Nguyen Thanh Qui, 2012. "Nonlinear Perturbations of Polyhedral Normal Cone Mappings and Affine Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 98-122, April.
    14. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    15. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    16. Boris Mordukhovich, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 35-42, April.
    17. Diethard Klatte & Bernd Kummer, 2013. "Aubin property and uniqueness of solutions in cone constrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 291-304, June.
    18. Gürkan, G. & Ozge, A.Y. & Robinson, S.M., 1997. "Sample-path solutions for simulation optimization problems and stochastic variational inequalities," Discussion Paper 1997-78, Tilburg University, Center for Economic Research.
    19. F. Aragón Artacho & A. Belyakov & A. Dontchev & M. López, 2014. "Local convergence of quasi-Newton methods under metric regularity," Computational Optimization and Applications, Springer, vol. 58(1), pages 225-247, May.
    20. Alan Beggs, 2018. "Sensitivity analysis of boundary equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 763-786, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:98:y:1998:i:2:d:10.1023_a:1022649803808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.