IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp560-578.html
   My bibliography  Save this article

A strongly sub-feasible primal-dual quasi interior-point algorithm for nonlinear inequality constrained optimization

Author

Listed:
  • Jian, Jin-Bao
  • Pan, Hua-Qin
  • Tang, Chun-Ming
  • Li, Jian-Ling

Abstract

In this paper, a primal-dual quasi interior-point algorithm for inequality constrained optimization problems is presented. At each iteration, the algorithm solves only two or three reduced systems of linear equations with the same coefficient matrix. The algorithm starts from an arbitrarily initial point. Then after finite iterations, the iteration points enter into the interior of the feasible region and the objective function is monotonically decreasing. Furthermore, the proposed algorithm is proved to possess global and superlinear convergence under mild conditions including a weak assumption of positive definiteness. Finally, some encouraging preliminary computational results are reported.

Suggested Citation

  • Jian, Jin-Bao & Pan, Hua-Qin & Tang, Chun-Ming & Li, Jian-Ling, 2015. "A strongly sub-feasible primal-dual quasi interior-point algorithm for nonlinear inequality constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 560-578.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:560-578
    DOI: 10.1016/j.amc.2015.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. Jian, 2006. "New Sequential Quadratically-Constrained Quadratic Programming Method of Feasible Directions and Its Convergence Rate," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 109-130, April.
    2. Z. Y. Gao & G. P. He & F. Wu, 1997. "Sequential Systems of Linear Equations Algorithm for Nonlinear Optimization Problems with General Constraints," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 371-397, November.
    3. Jian, Jin-Bao & Tang, Chun-Ming & Zheng, Hai-Yan, 2010. "Sequential quadratically constrained quadratic programming norm-relaxed algorithm of strongly sub-feasible directions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 645-657, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jianling & Huang, Renshuai & Jian, Jinbao, 2015. "A superlinearly convergent QP-free algorithm for mathematical programs with equilibrium constraints," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 885-903.
    2. Li, Jianling & Yang, Zhenping, 2018. "A QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 52-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    2. Li, Jianling & Yang, Zhenping, 2018. "A QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 52-72.
    3. Tang, Chun-ming & Jian, Jin-bao, 2012. "Strongly sub-feasible direction method for constrained optimization problems with nonsmooth objective functions," European Journal of Operational Research, Elsevier, vol. 218(1), pages 28-37.
    4. Jian, Jin-Bao & Tang, Chun-Ming & Zheng, Hai-Yan, 2010. "Sequential quadratically constrained quadratic programming norm-relaxed algorithm of strongly sub-feasible directions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 645-657, February.
    5. Fusheng Wang & Kecun Zhang, 2008. "A hybrid algorithm for nonlinear minimax problems," Annals of Operations Research, Springer, vol. 164(1), pages 167-191, November.
    6. Mohammad Ali Abooshahab & Mohsen Ekramian & Mohammad Ataei & Ali Ebrahimpour-Boroojeny, 2019. "Time-Delay Estimation in State and Output Equations of Nonlinear Systems Using Optimal Computational Approach," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1036-1064, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:560-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.