Nonlinear Perturbations of Polyhedral Normal Cone Mappings and Affine Variational Inequalities
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-011-9937-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
- Shu Lu & Stephen M. Robinson, 2008. "Variational Inequalities over Perturbed Polyhedral Convex Sets," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 689-711, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Duong Thi Kim Huyen & Jen-Chih Yao & Nguyen Dong Yen, 2019. "Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 1: Lipschitzian Stability," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 91-116, January.
- Nguyen Thanh Qui, 2014. "Generalized Differentiation of a Class of Normal Cone Operators," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 398-429, May.
- Nguyen Thanh Qui, 2016. "Coderivatives of implicit multifunctions and stability of variational systems," Journal of Global Optimization, Springer, vol. 65(3), pages 615-635, July.
- Nguyen Dong Yen & Xiaoqi Yang, 2018. "Affine Variational Inequalities on Normed Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 36-55, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alan Beggs, 2018.
"Sensitivity analysis of boundary equilibria,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 763-786, October.
- Alan Beggs, 2015. "Sensitivity Analysis of Boundary Equilibria," Economics Series Working Papers 762, University of Oxford, Department of Economics.
- Shu Lu, 2008. "Sensitivity of Static Traffic User Equilibria with Perturbations in Arc Cost Function and Travel Demand," Transportation Science, INFORMS, vol. 42(1), pages 105-123, February.
- Nguyen Qui, 2013. "Variational inequalities over Euclidean balls," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 243-258, October.
- Duong Thi Kim Huyen & Jen-Chih Yao & Nguyen Dong Yen, 2019. "Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 1: Lipschitzian Stability," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 91-116, January.
- M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
- Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
- Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
- Francisco Aragón Artacho & Boris Mordukhovich, 2011. "Enhanced metric regularity and Lipschitzian properties of variational systems," Journal of Global Optimization, Springer, vol. 50(1), pages 145-167, May.
- Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
- Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
- J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
- Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
- Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
- U. Felgenhauer, 1999. "Regularity Properties of Optimal Controls with Application to Discrete Approximation," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 97-110, July.
- Ilker Birbil, S. & Gürkan, G. & Listes, O.L., 2004. "Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints : Sample-Path Analysis," Discussion Paper 2004-25, Tilburg University, Center for Economic Research.
- Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
- A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
- J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
- Ashkan Mohammadi & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2020. "Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 731-758, September.
- A. L. Dontchev, 1998. "A Proof of the Necessity of Linear Independence Condition and Strong Second-Order Sufficient Optimality Condition for Lipschitzian Stability in Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 467-473, August.
More about this item
Keywords
Polyhedral normal cone mapping; Nonlinear perturbation; Fréchet normal cone; Limiting normal cone; Mordukhovich coderivative; Estimate; Parametric affine variational inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:153:y:2012:i:1:d:10.1007_s10957-011-9937-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.