IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v67y2014icp73-81.html
   My bibliography  Save this article

Influence of discrete delay on pattern formation in a ratio-dependent prey–predator model

Author

Listed:
  • Banerjee, Malay
  • Zhang, Lai

Abstract

In this paper we explore how the two mechanisms, Turing instability and Hopf bifurcation, interact to determine the formation of spatial patterns in a ratio-dependent prey–predator model with discrete time delay. We conduct both rigorous analysis and extensive numerical simulations. Results show that four types of patterns, cold spot, labyrinthine, chaotic as well as mixture of spots and labyrinthine can be observed with and without time delay. However, in the absence of time delay, the two aforementioned mechanisms have a significant impact on the emergence of spatial patterns, whereas only Hopf bifurcation threshold is derived by considering the discrete time delay as the bifurcation parameter. Moreover, time delay promotes the emergence of spatial patterns via spatio-temporal Hopf bifurcation compared to the non-delayed counterpart, implying the destabilizing role of time delay. In addition, the destabilizing role is prominent when the magnitude of time delay and the ratio of diffusivity are comparatively large.

Suggested Citation

  • Banerjee, Malay & Zhang, Lai, 2014. "Influence of discrete delay on pattern formation in a ratio-dependent prey–predator model," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 73-81.
  • Handle: RePEc:eee:chsofr:v:67:y:2014:i:c:p:73-81
    DOI: 10.1016/j.chaos.2014.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fasani, Stefano & Rinaldi, Sergio, 2011. "Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems," Ecological Modelling, Elsevier, vol. 222(18), pages 3449-3452.
    2. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 584-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Canrong & Ling, Zhi & Zhang, Lai, 2017. "Nonlocal interaction driven pattern formation in a prey–predator model," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 73-83.
    2. Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
    3. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    2. Della Rossa, Fabio & Fasani, Stefano & Rinaldi, Sergio, 2013. "Conditions for patchiness in plankton models," Theoretical Population Biology, Elsevier, vol. 83(C), pages 95-100.
    3. Malay Banerjee & Nayana Mukherjee & Vitaly Volpert, 2018. "Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey," Mathematics, MDPI, vol. 6(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:67:y:2014:i:c:p:73-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.