IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp599-604.html
   My bibliography  Save this article

Finding another yourself in multiplex networks

Author

Listed:
  • Zhao, Dawei
  • Wang, Lianhai
  • Xu, Lijuan
  • Wang, Zhen

Abstract

Recently multiplex networks have attracted a great deal of attentions in the science of complex networks, since they provide more natural and reasonable way to describe realistic complex systems. However, one of the biggest challenges for this issue is the lack of real-world multiplex data, which is mainly caused by the difficulty to distinguish who the replicas of nodes in different network layers (namely, finding another yourself (FAY) problem). In this paper, we consider two kinds of epidemic spreading models named SIR-DIAL model and SIR-NIAL model, and propose methods to solve the FAY problem based on the replica similarity during the epidemic process. To acquire high accuracy, our methods need to observe the spreading information of as many epidemics as possible, and record state information of nodes at as many time steps as possible during the epidemic spreading process with SIR-DIAL model; but just the final results after the epidemic spreading process ends in SIR-NIAL model.

Suggested Citation

  • Zhao, Dawei & Wang, Lianhai & Xu, Lijuan & Wang, Zhen, 2015. "Finding another yourself in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 599-604.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:599-604
    DOI: 10.1016/j.amc.2015.05.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawei Zhao & Lianhai Wang & Shudong Li & Zhen Wang & Lin Wang & Bo Gao, 2014. "Immunization of Epidemics in Multiplex Networks," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    2. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Lin Wang & Xiang Li & Yi-Qing Zhang & Yan Zhang & Kan Zhang, 2011. "Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    5. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Dawei & Wang, Lianhai & Xu, Shujiang & Liu, Guangqi & Han, Xiaohui & Li, Shudong, 2017. "Vital layer nodes of multiplex networks for immunization and attack," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 169-175.
    2. Zheng, Mingwen & Wang, Zeming & Li, Lixiang & Peng, Haipeng & Xiao, Jinghua & Yang, Yixian & Zhang, Yanping & Feng, Cuicui, 2018. "Finite-time generalized projective lag synchronization criteria for neutral-type neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 195-203.
    3. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    2. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    3. Fan, Chong-jun & Jin, Yang & Huo, Liang-an & Liu, Chen & Yang, Yun-peng & Wang, Ya-qiong, 2016. "Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 523-530.
    4. Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
    5. Rajeev K. Goel, 2023. "Seek foreign funds or technology? Relative impacts of different spillover modes on innovation," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1466-1488, August.
    6. Dietmar Harhoff & Elisabeth Mueller & John Van Reenen, 2014. "What are the Channels for Technology Sourcing? Panel Data Evidence from German Companies," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 23(1), pages 204-224, March.
    7. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    8. Mikaela Backman & Charlie Karlsson, 2016. "Determinants of self-employment among commuters and non-commuters," Papers in Regional Science, Wiley Blackwell, vol. 95(4), pages 755-774, November.
    9. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    10. Lorenzo Cassi & Anne Plunket, 2014. "Proximity, network formation and inventive performance: in search of the proximity paradox," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 395-422, September.
    11. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Keith Head & Yao Amber Li & Asier Minondo, 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 713-727, October.
    14. Ernest Miguélez & Rosina Moreno, 2013. "Do Labour Mobility and Technological Collaborations Foster Geographical Knowledge Diffusion? The Case of European Regions," Growth and Change, Wiley Blackwell, vol. 44(2), pages 321-354, June.
    15. Nicholas Bloom & Mark Schankerman & John Van Reenen, 2013. "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Econometric Society, vol. 81(4), pages 1347-1393, July.
    16. Cui Zhang & Xiongjin Feng & Yanzhen Wang, 2022. "Technology Spillovers among Innovation Agents from the Perspective of Network Connectedness," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    17. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    18. Charles Ayoubi & Boris Thurm, 2023. "Knowledge diffusion and morality: Why do we freely share valuable information with Strangers?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 32(1), pages 75-99, January.
    19. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    20. Martin M�ller & Allison Stewart, 2016. "Does Temporary Geographical Proximity Predict Learning? Knowledge Dynamics in the Olympic Games," Regional Studies, Taylor & Francis Journals, vol. 50(3), pages 377-390, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:599-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.