Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Y.G. & Nilkitsaranont, P., 2009. "Gas turbine performance prognostic for condition-based maintenance," Applied Energy, Elsevier, vol. 86(10), pages 2152-2161, October.
- Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
- Moon Keun Kim & Jaehoon Cha & Eunmi Lee & Van Huy Pham & Sanghyuk Lee & Nipon Theera-Umpon, 2019. "Simplified Neural Network Model Design with Sensitivity Analysis and Electricity Consumption Prediction in a Commercial Building," Energies, MDPI, vol. 12(7), pages 1-13, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
- Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
- Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
- Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
- Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
- Shun Dai & Xiaoyi Zhang & Mingyu Luo, 2024. "A Novel Data-Driven Approach for Predicting the Performance Degradation of a Gas Turbine," Energies, MDPI, vol. 17(4), pages 1-17, February.
- Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
- Zagorowska, Marta & Schulze Spüntrup, Frederik & Ditlefsen, Arne-Marius & Imsland, Lars & Lunde, Erling & Thornhill, Nina F., 2020. "Adaptive detection and prediction of performance degradation in off-shore turbomachinery," Applied Energy, Elsevier, vol. 268(C).
- Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
- Jesus L. Lobo & Igor Ballesteros & Izaskun Oregi & Javier Del Ser & Sancho Salcedo-Sanz, 2020. "Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants," Energies, MDPI, vol. 13(3), pages 1-28, February.
- Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
- Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
- Faisal Khan & Omer F. Eker & Atif Khan & Wasim Orfali, 2018. "Adaptive Degradation Prognostic Reasoning by Particle Filter with a Neural Network Degradation Model for Turbofan Jet Engine," Data, MDPI, vol. 3(4), pages 1-21, November.
- Xiaojie Ke & Zhengguo Xu & Wenhai Wang & Youxian Sun, 2017. "Remaining useful life prediction for non-stationary degradation processes with shocks," Journal of Risk and Reliability, , vol. 231(5), pages 469-480, October.
- Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
- Tucker, Swatara & Indrawan, Natarianto & Shadle, Lawrence J. & Harun, Nor Farida & Tucker, David, 2024. "Performance degradation in an advanced power system by analyzing process dynamics," Applied Energy, Elsevier, vol. 369(C).
- Abdelhamid Zaidi, 2024. "Utilisation of Deep Learning (DL) and Neural Networks (NN) Algorithms for Energy Power Generation: A Social Network and Bibliometric Analysis (2004-2022)," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 172-183, January.
- Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
- Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
More about this item
Keywords
Levenberg–Marquardt algorithm; convergence; neural networks; local minima; optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2176-:d:630105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.