IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v309y2017icp324-333.html
   My bibliography  Save this article

The Szeged index and the Wiener index of partial cubes with applications to chemical graphs

Author

Listed:
  • Črepnjak, Matevž
  • Tratnik, Niko

Abstract

In this paper, we study the Szeged index of partial cubes and hence generalize the result proved by Chepoi and Klavžar, who calculated this index for benzenoid systems. It is proved that the problem of calculating the Szeged index of a partial cube can be reduced to the problem of calculating the Szeged indices of weighted quotient graphs with respect to a partition coarser than Θ-partition. Similar result for the Wiener index was recently proved by Klavžar and Nadjafi-Arani. Furthermore, we show that such quotient graphs of partial cubes are again partial cubes. Since the results can be used to efficiently calculate the Wiener index and the Szeged index for specific families of chemical graphs, we consider C4C8 systems and show that the two indices of these graphs can be computed in linear time.

Suggested Citation

  • Črepnjak, Matevž & Tratnik, Niko, 2017. "The Szeged index and the Wiener index of partial cubes with applications to chemical graphs," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 324-333.
  • Handle: RePEc:eee:apmaco:v:309:y:2017:i:c:p:324-333
    DOI: 10.1016/j.amc.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317302552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Hui & Yang, Hua, 2015. "Bounds for the Sum-Balaban index and (revised) Szeged index of regular graphs," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1259-1266.
    2. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2015. "An inequality between the edge-Wiener index and the Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 714-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klavžar, Sandi & Azubha Jemilet, D. & Rajasingh, Indra & Manuel, Paul & Parthiban, N., 2018. "General Transmission Lemma and Wiener complexity of triangular grids," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 115-122.
    2. Brezovnik, Simon & Tratnik, Niko & Žigert Pleteršek, Petra, 2020. "Resonance graphs of catacondensed even ring systems," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    3. Alizadeh, Yaser & Klavžar, Sandi, 2018. "On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 113-118.
    4. Sharon, Jane Olive & Rajalaxmi, T.M. & Klavžar, Sandi & Rajan, R. Sundara & Rajasingh, Indra, 2021. "Transmission in H-naphtalenic nanosheet," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    5. Ji, Shengjin & Liu, Mengmeng & Wu, Jianliang, 2018. "A lower bound of revised Szeged index of bicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 480-487.
    6. Tratnik, Niko, 2018. "On the Steiner hyper-Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 360-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knor, Martin & Majstorović, Snježana & Škrekovski, Riste, 2018. "Graphs preserving Wiener index upon vertex removal," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 25-32.
    2. Andova, Vesna & Orlić, Damir & Škrekovski, Riste, 2017. "Leapfrog fullerenes and Wiener index," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 281-288.
    3. Wang, Shujing, 2017. "On extremal cacti with respect to the Szeged index," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 85-92.
    4. Ji, Shengjin & Liu, Mengmeng & Wu, Jianliang, 2018. "A lower bound of revised Szeged index of bicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 480-487.
    5. Knor, Martin & Kranjc, Jaka & Škrekovski, Riste & Tepeh, Aleksandra, 2017. "On the minimum value of sum-Balaban index," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 203-210.
    6. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2016. "Digraphs with large maximum Wiener index," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 260-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:309:y:2017:i:c:p:324-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.