IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v83y2022i4d10.1007_s10898-021-01116-w.html
   My bibliography  Save this article

An approximate lower order penalty approach for solving second-order cone linear complementarity problems

Author

Listed:
  • Zijun Hao

    (North Minzu University)

  • Chieu Thanh Nguyen

    (National Taiwan Normal University)

  • Jein-Shan Chen

    (National Taiwan Normal University)

Abstract

Based on a class of smoothing approximations to projection function onto second-order cone, an approximate lower order penalty approach for solving second-order cone linear complementarity problems (SOCLCPs) is proposed, and four kinds of specific smoothing approximations are considered. In light of this approach, the SOCLCP is approximated by asymptotic lower order penalty equations with penalty parameter and smoothing parameter. When the penalty parameter tends to positive infinity and the smoothing parameter monotonically decreases to zero, we show that the solution sequence of the asymptotic lower order penalty equations converges to the solution of the SOCLCP at an exponential rate under a mild assumption. A corresponding algorithm is constructed and numerical results are reported to illustrate the feasibility of this approach. The performance profile of four specific smoothing approximations is presented, and the generalization of two approximations are also investigated.

Suggested Citation

  • Zijun Hao & Chieu Thanh Nguyen & Jein-Shan Chen, 2022. "An approximate lower order penalty approach for solving second-order cone linear complementarity problems," Journal of Global Optimization, Springer, vol. 83(4), pages 671-697, August.
  • Handle: RePEc:spr:jglopt:v:83:y:2022:i:4:d:10.1007_s10898-021-01116-w
    DOI: 10.1007/s10898-021-01116-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01116-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01116-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jein-Shan Chen, 2019. "SOC Functions and Their Applications," Springer Optimization and Its Applications, Springer, number 978-981-13-4077-2, August.
    2. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    3. Jein-Shan Chen, 2006. "Two classes of merit functions for the second-order cone complementarity problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 495-519, December.
    4. Zheng-Hai Huang & Tie Ni, 2010. "Smoothing algorithms for complementarity problems over symmetric cones," Computational Optimization and Applications, Springer, vol. 45(3), pages 557-579, April.
    5. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    2. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    3. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
    4. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    5. Christian Bidard, 2010. "Complementarity Problems and General Equilibrium," Working Papers hal-04140923, HAL.
    6. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Solving Discrete Zero Point Problems with Vector Labeling," Other publications TiSEM 9bd940ee-3fe6-4201-aede-7, Tilburg University, School of Economics and Management.
    7. Hanna Sumita & Naonori Kakimura & Kazuhisa Makino, 2015. "The Linear Complementarity Problems with a Few Variables per Constraint," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1015-1026, October.
    8. K. Ahmad & K. R. Kazmi & N. Rehman, 1997. "Fixed-Point Technique for Implicit Complementarity Problem in Hilbert Lattice," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 67-72, April.
    9. Hanna Sumita & Naonori Kakimura & Kazuhisa Makino, 2019. "Total dual integrality of the linear complementarity problem," Annals of Operations Research, Springer, vol. 274(1), pages 531-553, March.
    10. Jugal Garg & Ruta Mehta & Vijay V. Vaziranic, 2018. "Substitution with Satiation: A New Class of Utility Functions and a Complementary Pivot Algorithm," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 996-1024, August.
    11. Christian Bidard, 2014. "The Ricardian rent theory two centuries after," Working Papers hal-04141289, HAL.
    12. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    13. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part III: Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 771-791, December.
    14. S. K. Neogy & Prasenjit Mondal & Abhijit Gupta & Debasish Ghorui, 2018. "On Solving Mean Payoff Games Using Pivoting Algorithms," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-26, October.
    15. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    16. Christian Bidard, 2015. "An oddity property for cross-dual games," Working Papers hal-04141427, HAL.
    17. Prasenjit Mondal, 2018. "Completely mixed strategies for single controller unichain semi-Markov games with undiscounted payoffs," Operational Research, Springer, vol. 18(2), pages 451-468, July.
    18. Senlai Zhu & Jie Ma & Tianpei Tang & Quan Shi, 2020. "A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    19. N. Krishnamurthy & S. K. Neogy, 2020. "On Lemke processibility of LCP formulations for solving discounted switching control stochastic games," Annals of Operations Research, Springer, vol. 295(2), pages 633-644, December.
    20. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:4:d:10.1007_s10898-021-01116-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.