IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp242-251.html
   My bibliography  Save this article

Some quantum integral inequalities via preinvex functions

Author

Listed:
  • Noor, Muhammad Aslam
  • Noor, Khalida Inayat
  • Awan, Muhammad Uzair

Abstract

In this paper, we obtain some new quantum analogues of Hermite–Hadamard and Iyengar type inequalities for some classes of preinvex functions. Some special cases are also discussed.

Suggested Citation

  • Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum integral inequalities via preinvex functions," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 242-251.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:242-251
    DOI: 10.1016/j.amc.2015.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tadeusz Antczak, 2014. "On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems," Journal of Global Optimization, Springer, vol. 59(4), pages 757-785, August.
    2. Ariana Pitea & Mihai Postolache, 2012. "Duality theorems for a new class of multitime multiobjective variational problems," Journal of Global Optimization, Springer, vol. 54(1), pages 47-58, September.
    3. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum estimates for Hermite–Hadamard inequalities," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 675-679.
    4. X.M. Yang & X.Q. Yang & K.L. Teo, 2003. "Generalized Invexity and Generalized Invariant Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 607-625, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aglić Aljinović, Andrea & Kovačević, Domagoj & Puljiz, Mate & Žgaljić Keko, Ana, 2021. "On Ostrowski inequality for quantum calculus," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Muhammad Aamir Ali & Sotiris K. Ntouyas & Jessada Tariboon, 2021. "Generalization of Quantum Ostrowski-Type Integral Inequalities," Mathematics, MDPI, vol. 9(10), pages 1-8, May.
    3. Surang Sitho & Muhammad Aamir Ali & Hüseyin Budak & Sotiris K. Ntouyas & Jessada Tariboon, 2021. "Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    4. Yongping Deng & Muhammad Uzair Awan & Shanhe Wu, 2019. "Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    5. Hefeng Zhuang & Wenjun Liu & Jaekeun Park, 2019. "Some Quantum Estimates of Hermite-Hadamard Inequalities for Quasi-Convex Functions," Mathematics, MDPI, vol. 7(2), pages 1-18, February.
    6. Humaira Kalsoom & Muhammad Amer & Moin-ud-Din Junjua & Sabir Hussain & Gullnaz Shahzadi, 2019. "Some ( p , q )-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions," Mathematics, MDPI, vol. 7(8), pages 1-22, July.
    7. Pimchana Siricharuanun & Samet Erden & Muhammad Aamir Ali & Hüseyin Budak & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2021. "Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    8. Cristescu, Gabriela & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2016. "Some inequalities for functions having Orlicz-convexity," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 226-236.
    9. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayswal, Anurag & Singh, Shipra & Kurdi, Alia, 2016. "Multitime multiobjective variational problems and vector variational-like inequalities," European Journal of Operational Research, Elsevier, vol. 254(3), pages 739-745.
    2. Cristescu, Gabriela & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2016. "Some inequalities for functions having Orlicz-convexity," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 226-236.
    3. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    4. Waewta Luangboon & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Simpson- and Newton-Type Inequalities for Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    5. Tiziana Ciano & Massimiliano Ferrara & Ştefan Mititelu & Bruno Antonio Pansera, 2020. "Efficiency for Vector Variational Quotient Problems with Curvilinear Integrals on Riemannian Manifolds via Geodesic Quasiinvexity," Mathematics, MDPI, vol. 8(7), pages 1-15, June.
    6. Muhammad Aslam Noor & Khalida Inayat Noor & Saima Rashid, 2018. "Some New Classes of Preinvex Functions and Inequalities," Mathematics, MDPI, vol. 7(1), pages 1-16, December.
    7. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    8. Savin Treanţă, 2021. "Duality Theorems for ( ρ , ψ , d )-Quasiinvex Multiobjective Optimization Problems with Interval-Valued Components," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    9. Julalak Prabseang & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    10. Seksan Jhanthanam & Jessada Tariboon & Sotiris K. Ntouyas & Kamsing Nonlaopon, 2019. "On q -Hermite-Hadamard Inequalities for Differentiable Convex Functions," Mathematics, MDPI, vol. 7(7), pages 1-9, July.
    11. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2005. "Criteria for generalized invex monotonicities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 115-119, July.
    12. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    13. M. Soleimani-damaneh, 2012. "Characterizations and applications of generalized invexity and monotonicity in Asplund spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 592-613, October.
    14. Constantin Zălinescu, 2014. "A Critical View on Invexity," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 695-704, September.
    15. Qamrul Ansari & Mahboubeh Rezaie & Jafar Zafarani, 2012. "Generalized vector variational-like inequalities and vector optimization," Journal of Global Optimization, Springer, vol. 53(2), pages 271-284, June.
    16. Zaiyun Peng & Yawei Liu & X. J. Long, 2009. "Remarks on New Properties of Preinvex Functions," Modern Applied Science, Canadian Center of Science and Education, vol. 3(11), pages 1-11, November.
    17. Akhlad Iqbal & Shahid Ali & I. Ahmad, 2012. "On Geodesic E-Convex Sets, Geodesic E-Convex Functions and E-Epigraphs," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 239-251, October.
    18. Pimchana Siricharuanun & Samet Erden & Muhammad Aamir Ali & Hüseyin Budak & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2021. "Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    19. Fongchan Wannalookkhee & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(7), pages 1-19, March.
    20. D. L. Zhu & L. L. Zhu & Q. Xu, 2008. "Generalized Invex Monotonicity and Its Role in Solving Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 453-464, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:242-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.