IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p683-d253406.html
   My bibliography  Save this article

Some ( p , q )-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions

Author

Listed:
  • Humaira Kalsoom

    (School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
    Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Muhammad Amer

    (Department of Basic Sciences, Deanship of Preparatory Year Program, University of Hail, Hail 2440, Saudi Arabia)

  • Moin-ud-Din Junjua

    (Department of Mathematics and Statistics, Institute of Southern Punjab, Multan 32100, Pakistan)

  • Sabir Hussain

    (Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Gullnaz Shahzadi

    (Department of Mechanical Engineering, Ecole de Technologie Superieure, 1100 Notre-Dame W, Montreal, QC H3C 1K3, Canada)

Abstract

In this paper, we present the preliminaries of ( p , q ) -calculus for functions of two variables. Furthermore, we prove some new Hermite-Hadamard integral-type inequalities for convex functions on coordinates over [ a , b ] × [ c , d ] by using the ( p , q ) -calculus of the functions of two variables. Furthermore, we establish an identity for the right-hand side of the Hermite-Hadamard-type inequalities on coordinates that is proven by using the ( p , q ) -calculus of the functions of two variables. Finally, we use the new identity to prove some trapezoidal-type inequalities with the assumptions of convexity and quasi-convexity on coordinates of the absolute values of the partial derivatives defined in the ( p , q ) -calculus of the functions of two variables.

Suggested Citation

  • Humaira Kalsoom & Muhammad Amer & Moin-ud-Din Junjua & Sabir Hussain & Gullnaz Shahzadi, 2019. "Some ( p , q )-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions," Mathematics, MDPI, vol. 7(8), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:683-:d:253406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hefeng Zhuang & Wenjun Liu & Jaekeun Park, 2019. "Some Quantum Estimates of Hermite-Hadamard Inequalities for Quasi-Convex Functions," Mathematics, MDPI, vol. 7(2), pages 1-18, February.
    2. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum estimates for Hermite–Hadamard inequalities," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 675-679.
    3. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum integral inequalities via preinvex functions," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 242-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julalak Prabseang & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    2. Saima Rashid & Muhammad Aslam Noor & Khalida Inayat Noor & Farhat Safdar & Yu-Ming Chu, 2019. "Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale," Mathematics, MDPI, vol. 7(10), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Aamir Ali & Sotiris K. Ntouyas & Jessada Tariboon, 2021. "Generalization of Quantum Ostrowski-Type Integral Inequalities," Mathematics, MDPI, vol. 9(10), pages 1-8, May.
    2. Pimchana Siricharuanun & Samet Erden & Muhammad Aamir Ali & Hüseyin Budak & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2021. "Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    3. Surang Sitho & Muhammad Aamir Ali & Hüseyin Budak & Sotiris K. Ntouyas & Jessada Tariboon, 2021. "Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    4. Hefeng Zhuang & Wenjun Liu & Jaekeun Park, 2019. "Some Quantum Estimates of Hermite-Hadamard Inequalities for Quasi-Convex Functions," Mathematics, MDPI, vol. 7(2), pages 1-18, February.
    5. Waewta Luangboon & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Simpson- and Newton-Type Inequalities for Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    6. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    7. Julalak Prabseang & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    8. Seksan Jhanthanam & Jessada Tariboon & Sotiris K. Ntouyas & Kamsing Nonlaopon, 2019. "On q -Hermite-Hadamard Inequalities for Differentiable Convex Functions," Mathematics, MDPI, vol. 7(7), pages 1-9, July.
    9. Aglić Aljinović, Andrea & Kovačević, Domagoj & Puljiz, Mate & Žgaljić Keko, Ana, 2021. "On Ostrowski inequality for quantum calculus," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Fongchan Wannalookkhee & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "On Hermite-Hadamard Type Inequalities for Coordinated Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(7), pages 1-19, March.
    11. Yongping Deng & Muhammad Uzair Awan & Shanhe Wu, 2019. "Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    12. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum integral inequalities via preinvex functions," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 242-251.
    13. Waewta Luangboon & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas & Hüseyin Budak, 2022. "Some ( p , q )-Integral Inequalities of Hermite–Hadamard Inequalities for ( p , q )-Differentiable Convex Functions," Mathematics, MDPI, vol. 10(5), pages 1-20, March.
    14. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram, 2020. "On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    15. Miguel J. Vivas-Cortez & Rozana Liko & Artion Kashuri & Jorge E. Hernández Hernández, 2019. "New Quantum Estimates of Trapezium-Type Inequalities for Generalized ϕ -Convex Functions," Mathematics, MDPI, vol. 7(11), pages 1-19, November.
    16. Cristescu, Gabriela & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2016. "Some inequalities for functions having Orlicz-convexity," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 226-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:683-:d:253406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.