Convergence and Almost Sure Polynomial Stability of Partially Truncated Split-Step Theta Method for Stochastic Pantograph Models with Lévy Jumps
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
- He, Lingyun & Banihashemi, Seddigheh & Jafari, Hossein & Babaei, Afshin, 2021. "Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
- Liu, Linna & Mo, Haoyi & Deng, Feiqi, 2019. "Split-step theta method for stochastic delay integro-differential equations with mean square exponential stability," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 320-328.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, August.
- Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
- Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015.
"Approximate Hedging Of Options Under Jump-Diffusion Processes,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
- Karl Mina & Gerald Cheang & Carl Chiarella, 2013. "Approximate Hedging of Options under Jump-Diffusion Processes," Research Paper Series 340, Quantitative Finance Research Centre, University of Technology, Sydney.
- Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
- Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019.
"A general closed form option pricing formula,"
Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
- Ciprian Necula & Gabriel G. Drimus & Walter Farkas, 2015. "A General Closed Form Option Pricing Formula," Swiss Finance Institute Research Paper Series 15-53, Swiss Finance Institute, revised Mar 2016.
- Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
- Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
- Tung-Lung Wu, 2020. "Boundary Crossing Probabilities of Jump Diffusion Processes to Time-Dependent Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 13-24, March.
- Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
- Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
- Henry Lam & Zhenming Liu, 2014. "From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments," Papers 1406.6084, arXiv.org.
- Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
- Emmanuel Coffie, 2021. "Delay stochastic interest rate model with jump and strong convergence in Monte Carlo simulations," Papers 2103.07651, arXiv.org, revised Jul 2021.
- Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
- Leippold, Markus & Vasiljević, Nikola, 2017.
"Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model,"
Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
- Markus LEIPPOLD & Nikola VASILJEVIC, 2015. "Pricing and Disentanglement of American Puts in the Hyper-Exponential Jump-Diffusion Model," Swiss Finance Institute Research Paper Series 15-08, Swiss Finance Institute, revised Mar 2015.
- Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- F. Fornari & A. Mele, 1998.
"ARCH Models and Option Pricing : The Continuous Time Connection,"
THEMA Working Papers
98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Antonio Mele & Fabio Fornari, 1999. "ARCH Models and Option Pricing: the Continuous-Time Connection," Computing in Economics and Finance 1999 113, Society for Computational Economics.
- Fornari, F. & Mele, A., 1998. "ARCH Models and Option Pricing: The Continuous Time Connection," Papers 9830, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
- Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
More about this item
Keywords
stochastic pantograph models; Lévy jumps; split-step theta method; convergence rate; almost sure polynomial stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2016-:d:1424931. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.