IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v260y2015icp204-226.html
   My bibliography  Save this article

Bifurcation analysis of a mathematical model for genetic regulatory network with time delays

Author

Listed:
  • Zang, Hong
  • Zhang, Tonghua
  • Zhang, Yanduo

Abstract

In this paper, we aim to investigate the dynamics of a gene regulatory network which is a time-delayed version of the model proposed by Elowitz and Leibler [Nature 403 (2000) 335–338]. Based on the normal form theory and center-manifold reduction, Hopf bifurcations including the bifurcation direction and stability of the bifurcated periodic orbits are investigated. We also discuss effects of transcriptional rate and time delay on the amplitude and period of the oscillation of the network. It shows that variations of time delay or transcriptional rate can change the period and amplitude of the oscillation. More precisely, (i) the amplitude increases with small time delay, while the change of amplitude is not sensitive to relatively large time delay. However, the robustness of amplitudes is not true any more for the case of using the transcriptional rate as parameter, where amplitude always increases quickly and linearly with the transcriptional rate; (ii) the period of oscillation increases as the time delay increases, but it grows up initially as the transcriptional rate increases and then keeps unchanged to certain constant value, which implies that the robustness of period to the transcriptional rate variations occurs. Our numerical simulations also support the theoretical conclusions, namely both suggest that time delay and transcriptional rate can be used as control parameters in genetic regulatory networks.

Suggested Citation

  • Zang, Hong & Zhang, Tonghua & Zhang, Yanduo, 2015. "Bifurcation analysis of a mathematical model for genetic regulatory network with time delays," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 204-226.
  • Handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:204-226
    DOI: 10.1016/j.amc.2015.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031500346X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Jianwei & Liu, Zengrong & Zheng, Weixing & Xu, Fengdan & Chen, Luonan, 2009. "Oscillatory dynamics in a simple gene regulatory network mediated by small RNAs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2995-3000.
    2. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    3. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hongwei & Wu, Bo & Lu, Jianquan, 2016. "A minimum-time control for Boolean control networks with impulsive disturbances," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 477-483.
    2. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2019. "Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 868-883.
    3. Zarei, Amin & Tavakoli, Saeed, 2016. "Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 323-339.
    4. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    5. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Gao, Bo & Deng, Zheng-hong & Zhao, Da-wei & Song, Qun, 2017. "State analysis of Boolean control networks with impulsive and uncertain disturbances," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 187-192.
    8. Ayachi, Moez, 2022. "Dynamics of fuzzy genetic regulatory networks with leakage and mixed delays in doubly-measure pseudo-almost periodic environment," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. Yang, Juanping & Sheng, Yuhong & Li, Hong-Li & Hu, Cheng, 2023. "Stability and adaptive control-based synchronization of delayed uncertain fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    2. Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    3. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    4. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    6. Gentian Buzi & Mustafa Khammash, 2016. "Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-16, June.
    7. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    9. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    10. Nasimul Noman & Taku Monjo & Pablo Moscato & Hitoshi Iba, 2015. "Evolving Robust Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-21, January.
    11. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    12. Theinmozhi Arulraj & Debashis Barik, 2018. "Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-23, October.
    13. Karl P. Gerhardt & Satyajit D. Rao & Evan J. Olson & Oleg A. Igoshin & Jeffrey J. Tabor, 2021. "Independent control of mean and noise by convolution of gene expression distributions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Tina Toni & Bruce Tidor, 2013. "Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-17, March.
    15. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    16. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    17. Andras Gyorgy, 2023. "Competition and evolutionary selection among core regulatory motifs in gene expression control," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Krishnan, Arun & Tomita, Masaru & Giuliani, Alessandro, 2008. "Evolution of gene regulatory networks: Robustness as an emergent property of evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2170-2186.
    19. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.
    20. Tadamune Kaneko & Macoto Kikuchi, 2022. "Evolution enhances mutational robustness and suppresses the emergence of a new phenotype: A new computational approach for studying evolution," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:204-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.