IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005434.html
   My bibliography  Save this article

Dynamics robustness of cascading systems

Author

Listed:
  • Jonathan T Young
  • Tetsuhiro S Hatakeyama
  • Kunihiko Kaneko

Abstract

A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.Author summary: Cells use signaling pathways to transmit information received on its membrane to DNA, and many important cellular processes are tied to signaling networks. Past experiments have shown that cells’ internal signaling networks are sophisticated enough to process and encode temporal information such as the length of time a ligand is bound to a receptor. However, little research has been done to verify whether information encoded onto temporal profiles can be made robust. We examined mathematical models of linear signaling networks and found that the relaxation of the response to a transient stimuli can be made robust to certain parameter fluctuations. Robustness is a key concept in biological systems—it would be disastrous if a cell could not operate if there was a slight change in its environment or physiology. Our research shows that such dynamics robustness is a property of linear signaling cascades, and we outline the design principles needed to generate such robustness. We discovered that two conditions regarding the speed of the internal chemical reactions and concentration levels are needed to generate dynamics robustness.

Suggested Citation

  • Jonathan T Young & Tetsuhiro S Hatakeyama & Kunihiko Kaneko, 2017. "Dynamics robustness of cascading systems," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-17, March.
  • Handle: RePEc:plo:pcbi00:1005434
    DOI: 10.1371/journal.pcbi.1005434
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005434
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005434&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. U. Alon & M. G. Surette & N. Barkai & S. Leibler, 1999. "Robustness in bacterial chemotaxis," Nature, Nature, vol. 397(6715), pages 168-171, January.
    2. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    2. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    3. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    4. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    5. Sam F Greenbury & Steffen Schaper & Sebastian E Ahnert & Ard A Louis, 2016. "Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-27, March.
    6. Oliver Pohl & Marius Hintsche & Zahra Alirezaeizanjani & Maximilian Seyrich & Carsten Beta & Holger Stark, 2017. "Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-24, January.
    7. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    8. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    9. Jamie X Luo & Matthew S Turner, 2012. "Evolving Sensitivity Balances Boolean Networks," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
    10. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    11. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Yann S Dufour & Sébastien Gillet & Nicholas W Frankel & Douglas B Weibel & Thierry Emonet, 2016. "Direct Correlation between Motile Behavior and Protein Abundance in Single Cells," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-25, September.
    13. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    14. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    15. Imke Spöring & Vincent A Martinez & Christian Hotz & Jana Schwarz-Linek & Keara L Grady & Josué M Nava-Sedeño & Teun Vissers & Hanna M Singer & Manfred Rohde & Carole Bourquin & Haralampos Hatzikirou , 2018. "Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle," PLOS Biology, Public Library of Science, vol. 16(9), pages 1-19, September.
    16. Gregor Moenke & Martin Falcke & Keven Thurley, 2012. "Hierarchic Stochastic Modelling Applied to Intracellular Ca2+ Signals," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
    17. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Saleh Alseekh & Annabella Klemmer & Jianbing Yan & Tingting Guo & Alisdair R. Fernie, 2025. "Embracing plant plasticity or robustness as a means of ensuring food security," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Yonatan Loewenstein, 2008. "Robustness of Learning That Is Based on Covariance-Driven Synaptic Plasticity," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-10, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.