IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027766.html
   My bibliography  Save this article

A Simultaneous Test of Synchrony Causal Factors in Muskrat and Mink Fur Returns at Different Scales across Canada

Author

Listed:
  • Sergio A Estay
  • Abraham A Albornoz
  • Mauricio Lima
  • Mark S Boyce
  • Nils C Stenseth

Abstract

Background: Synchrony among populations has been attributed to three major hypotheses: dispersal, the Moran effect, and trophic-level interactions. Unfortunately, simultaneous testing of these hypotheses demands complete and detailed data, which are scarce for ecological systems. Methodology/Principal Findings: Hudson's Bay Company data on mink and muskrat fur returns in Canada represent an excellent opportunity to test these hypotheses because of the detailed spatial and temporal data from this predator-prey system. Using structural equation modelling, support for each hypothesis was evaluated at two spatial scales: across Canada and dividing the country into three regions longitudinally. Our results showed that at both scales mink synchrony is a major factor determining muskrat synchrony, supporting the hypothesis of trophic-level interactions, but the influence of winter precipitation synchrony is also important in eastern Canada. Moreover, mink synchrony is influenced principally by winter precipitation synchrony at the level of all Canada (Moran effect), but by distance at regional level, which might suggest some influence of dispersal at this level. Discussion/Significance: Our result is one of the few reports of synchrony mediated by trophic-level interactions, highlighting the importance of evaluation of scale effects in population synchrony studies.

Suggested Citation

  • Sergio A Estay & Abraham A Albornoz & Mauricio Lima & Mark S Boyce & Nils C Stenseth, 2011. "A Simultaneous Test of Synchrony Causal Factors in Muskrat and Mink Fur Returns at Different Scales across Canada," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0027766
    DOI: 10.1371/journal.pone.0027766
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027766
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027766&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernd Blasius & Amit Huppert & Lewi Stone, 1999. "Complex dynamics and phase synchronization in spatially extended ecological systems," Nature, Nature, vol. 399(6734), pages 354-359, May.
    2. Yao, Qiwei & Tong, Howell & Finkenstädt, Bärbel & Stenseth, Nils Chr, 2000. "Common structure in panels of short time series," LSE Research Online Documents on Economics 6325, London School of Economics and Political Science, LSE Library.
    3. B. T. Grenfell & K. Wilson & B. F. Finkenstädt & T. N. Coulson & S. Murray & S. D. Albon & J. M. Pemberton & T. H. Clutton-Brock & M. J. Crawley, 1998. "Noise and determinism in synchronized sheep dynamics," Nature, Nature, vol. 394(6694), pages 674-677, August.
    4. Rolf A. Ims & Harry P. Andreassen, 2000. "Spatial synchronization of vole population dynamics by predatory birds," Nature, Nature, vol. 408(6809), pages 194-196, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Meng & Li, Wenlong & Li, Zizhen & Dai, Huawei & Liu, Hongtao, 2007. "Spatial synchrony in host–parasitoid populations," Ecological Modelling, Elsevier, vol. 204(1), pages 29-39.
    2. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "Robust synchronization of a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1092-1096.
    3. Ge, Zheng-Ming & Chang, Ching-Ming & Chen, Yen-Sheng, 2006. "Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1298-1315.
    4. Saitoh, Takashi & Cohen, Joel E., 2018. "Environmental variability and density dependence in the temporal Taylor’s law," Ecological Modelling, Elsevier, vol. 387(C), pages 134-143.
    5. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    6. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.
    7. Hoang, Thang Manh, 2011. "Complex synchronization manifold in coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 48-57.
    8. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    9. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Feng, Sha-Sha & Qiang, Cheng-Cang, 2013. "Self-organization of five species in a cyclic competition game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4675-4682.
    11. Hugues Santin-Janin & Bernard Hugueny & Philippe Aubry & David Fouchet & Olivier Gimenez & Dominique Pontier, 2014. "Accounting for Sampling Error When Inferring Population Synchrony from Time-Series Data: A Bayesian State-Space Modelling Approach with Applications," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    12. Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.
    13. Chołoniewski, Jan & Chmiel, Anna & Sienkiewicz, Julian & Hołyst, Janusz A. & Küster, Dennis & Kappas, Arvid, 2016. "Temporal Taylor’s scaling of facial electromyography and electrodermal activity in the course of emotional stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 91-100.
    14. Seuront, Laurent, 2004. "Small-scale turbulence in the plankton: low-order deterministic chaos or high-order stochasticity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 495-525.
    15. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.
    16. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    17. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "GCS of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1238-1245.
    18. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).
    19. Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Der Chyan Lin, 2013. "Synchrony in Broadband Fluctuation and the 2008 Financial Crisis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.