IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v251y2015icp521-526.html
   My bibliography  Save this article

A remark on a stochastic logistic model with Lévy jumps

Author

Listed:
  • Liu, Meng
  • Bai, Chuanzhi

Abstract

This note is concerned with a famous stochastic logistic equation with Lévy noises. Sufficient and necessary conditions for extinction and permanence are established. The results reveal that the Lévy noise may change the properties of population dynamics significantly. The results also reveal an important property of the Lévy noise: it is unfavorable for the permanence of the population. Some numerical simulations are introduced to validate the analytical results.

Suggested Citation

  • Liu, Meng & Bai, Chuanzhi, 2015. "A remark on a stochastic logistic model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 521-526.
  • Handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:521-526
    DOI: 10.1016/j.amc.2014.11.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandal, Partha Sarathi & Banerjee, Malay, 2012. "Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1216-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Asymptotic behavior of a food-limited Lotka–Volterra mutualism model with Markovian switching and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 94-104.
    2. Zhang, Xiaofeng & Yuan, Rong, 2022. "Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and weak kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 56-70.
    3. Almaz T. Abebe & Shenglan Yuan & Daniel Tesfay & James Brannan, 2024. "Most Probable Dynamics of the Single-Species with Allee Effect under Jump-Diffusion Noise," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    4. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Daqing & Zuo, Wenjie & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Stationary distribution and periodic solutions for stochastic Holling–Leslie predator–prey systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 16-28.
    2. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    3. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    4. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    5. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    6. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Liu, Yan & Yu, Pinrui & Chu, Dianhui & Su, Huan, 2019. "Stationary distribution of stochastic Markov jump coupled systems based on graph theory," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 188-195.
    8. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Debasis Mukherjee, 2022. "Stochastic Analysis of an Eco-Epidemic Model with Biological Control," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2539-2555, December.
    10. Han, Qixing & Jiang, Daqing, 2015. "Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 204-217.
    11. Zhang, Qiumei & Jiang, Daqing, 2021. "Dynamics of stochastic predator-prey systems with continuous time delay," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Ouyang, Mengqian & Li, Xiaoyue, 2015. "Permanence and asymptotical behavior of stochastic prey–predator system with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 539-559.
    13. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    14. Jana, Debaldev & Banerjee, Aniket & Samanta, G.P., 2017. "Degree of prey refuges: Control the competition among prey and foraging ability of predator," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 350-362.
    15. Mondal, Bapin & Ghosh, Uttam & Rahman, Md Sadikur & Saha, Pritam & Sarkar, Susmita, 2022. "Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 111-135.
    16. Xu, Dongsheng & Liu, Ming & Xu, Xiaofeng, 2020. "Analysis of a stochastic predator–prey system with modified Leslie–Gower and Holling-type IV schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:521-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.