IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v85y2006i1-2p77-84.html
   My bibliography  Save this article

Simulating the effects of extreme dry and wet years on the water use of flooding-irrigated maize in a Mediterranean landplane

Author

Listed:
  • Utset, Angel
  • Martinez-Cob, Antonio
  • Farre, Imma
  • Cavero, Jose

Abstract

No abstract is available for this item.

Suggested Citation

  • Utset, Angel & Martinez-Cob, Antonio & Farre, Imma & Cavero, Jose, 2006. "Simulating the effects of extreme dry and wet years on the water use of flooding-irrigated maize in a Mediterranean landplane," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 77-84, September.
  • Handle: RePEc:eee:agiwat:v:85:y:2006:i:1-2:p:77-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00100-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Utset, Angel & Farre, Imma & Martinez-Cob, Antonio & Cavero, Jose, 2004. "Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 205-219, May.
    2. Neira, X.X. & Alvarez, C.J. & Cuesta, T.S. & Cancela, J.J., 2005. "Evaluation of water-use in traditional irrigation: An application to the Lemos Valley irrigation district, northwest of Spain," Agricultural Water Management, Elsevier, vol. 75(2), pages 137-151, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garci­a-Vila, M. & Lorite, I.J. & Soriano, M.A. & Fereres, E., 2008. "Management trends and responses to water scarcity in an irrigation scheme of Southern Spain," Agricultural Water Management, Elsevier, vol. 95(4), pages 458-468, April.
    2. Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Ali Rahimikhoob, 2014. "Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 657-669, February.
    3. Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
    4. Hlavinka, Petr & Trnka, Miroslav & Balek, Jan & Semerádová, Daniela & Hayes, Michael & Svoboda, Mark & Eitzinger, Josef & Mozný, Martin & Fischer, Milan & Hunt, Eric & Zalud, Zdenek, 2011. "Development and evaluation of the SoilClim model for water balance and soil climate estimates," Agricultural Water Management, Elsevier, vol. 98(8), pages 1249-1261, May.
    5. Ali Rahimikhoob & Mahmood Behbahani & Javad Fakheri, 2012. "An Evaluation of Four Reference Evapotranspiration Models in a Subtropical Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2867-2881, August.
    6. Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
    7. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Alexandris, S. & Kerkides, P. & Liakatas, A., 2006. "Daily reference evapotranspiration estimates by the "Copais" approach," Agricultural Water Management, Elsevier, vol. 82(3), pages 371-386, April.
    9. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    10. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    11. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
    12. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    13. Ding, Zheli & Ali, Esmat F. & Elmahdy, Ahmed M. & Ragab, Khaled E. & Seleiman, Mahmoud F. & Kheir, Ahmed M.S., 2021. "Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    15. Baik, Jongjin & Choi, Minha, 2015. "Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration," Agricultural Water Management, Elsevier, vol. 159(C), pages 77-91.
    16. T. Cuesta & C. Álvarez & J. Cancela & D. Miranda & X. Neira, 2006. "Wastewater Management Evaluation by Using the Opinion Survey in Galicia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 817-828, December.
    17. Saeedeh Shirin Manesh & Hossein Ahani & Mehdi Rezaeian-Zadeh, 2014. "ANN-based mapping of monthly reference crop evapotranspiration by using altitude, latitude and longitude data in Fars province, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(1), pages 103-122, February.
    18. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    19. Athanasios Margonis & Georgia Papaioannou & Petros Kerkides & Gianna Kitsara & George Bourazanis, 2018. "Canopy Resistance and Actual Evapotranspiration over an Olive Orchard," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5007-5026, December.
    20. Espadafor, M. & Lorite, I.J. & Gavilán, P. & Berengena, J., 2011. "An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain," Agricultural Water Management, Elsevier, vol. 98(6), pages 1045-1061, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:85:y:2006:i:1-2:p:77-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.