IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i4p661-664.html
   My bibliography  Save this article

A simple irrigation scheduling approach for pecans

Author

Listed:
  • Samani, Zohrab
  • Bawazir, Salim
  • Skaggs, Rhonda
  • Longworth, John
  • Piñon, Aldo
  • Tran, Vien

Abstract

Pecans are a major crop in New Mexico's Lower Rio Grande Valley (LRGV). It is estimated that New Mexico is responsible for about 21% of the world's pecan production (Lillywhite et al., 2007). Currently, approximately 12,000Â ha of pecan orchards at various stages of growth consume 45% of the area's irrigation water. Pecan evapotranspiration (ET) varies with age, canopy cover, soil type, crop density and method of water management. Intense competition for the LRGV's limited water supply has created a serious need for better water management through improved irrigation scheduling. Annual pecan ET ranges from as low as 500Â mm to as high as 1400Â mm. Diversity of the pecan crop coefficient (Kc) and ET makes the task of irrigation scheduling for this crop very complicated. Using remote sensing technology and field ET measurements, a simple relationship was developed to relate crop coefficient and ET to canopy cover. This relationship is then used in combination with climate data to calculate daily and weekly water requirements for each orchard. The difference between annual ET values estimated from canopy cover and values measured with an eddy covariance flux tower ranged from 2 to 5%. The average ratio of estimated monthly ET values over measured ET values was 1.03 with the standard error of the estimate ranging from 10 to 20Â mm/month. This methodology provides a simple tool that farmers can use to schedule irrigation of pecan orchards. Even though the methodology was developed for irrigation scheduling in the LRGV, it can be used in other locations by transferring the reference crop coefficients using Kc-GDD relationships.

Suggested Citation

  • Samani, Zohrab & Bawazir, Salim & Skaggs, Rhonda & Longworth, John & Piñon, Aldo & Tran, Vien, 2011. "A simple irrigation scheduling approach for pecans," Agricultural Water Management, Elsevier, vol. 98(4), pages 661-664, February.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:661-664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00360-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sammis, T. W. & Mexal, J. G. & Miller, D., 2004. "Evapotranspiration of flood-irrigated pecans," Agricultural Water Management, Elsevier, vol. 69(3), pages 179-190, October.
    2. Bastiaanssen, W. G. M., 1998. "Remote sensing in water resources management: the state of the art," IWMI Books, Reports H022865, International Water Management Institute.
    3. Narendra Gontia & Kamlesh Tiwari, 2010. "Estimation of Crop Coefficient and Evapotranspiration of Wheat (Triticum aestivum) in an Irrigation Command Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1399-1414, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Emile H. Elias & Robert Flynn & Omololu John Idowu & Julian Reyes & Soumaila Sanogo & Brian J. Schutte & Ryann Smith & Caitriana Steele & Carol Sutherland, 2019. "Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    3. Mokari, Esmaiil & Samani, Zohrab & Heerema, Richard & Ward, Frank, 2021. "Evaluation of long-term climate change impact on the growing season and water use of mature pecan in Lower Rio Grande Valley," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Ibraimo, Nadia A. & Taylor, Nicky J. & Steyn, J. Martin & Gush, Mark B. & Annandale, John G., 2016. "Estimating water use of mature pecan orchards: A six stage crop growth curve approach," Agricultural Water Management, Elsevier, vol. 177(C), pages 359-368.
    6. Garcia-Vasquez, Ana Cristina & Mokari, Esmaiil & Samani, Zohrab & Fernald, Alexander, 2022. "Using UAV-thermal imaging to calculate crop water use and irrigation efficiency in a flood-irrigated pecan orchard," Agricultural Water Management, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
    2. Mohamed Elhag & Aris Psilovikos & Ioannis Manakos & Kostas Perakis, 2011. "Application of the Sebs Water Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over the Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2731-2742, September.
    3. World Bank, 2007. "Making the Most of Scarcity : Accountability for Better Water Management Results in the Middle East and North Africa," World Bank Publications - Books, The World Bank Group, number 6845.
    4. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    5. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    6. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    7. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    8. Usman Awan & Bernhard Tischbein & Christopher Conrad & Christopher Martius & Mohsin Hafeez, 2011. "Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2467-2485, August.
    9. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Yi Cai & Yasuhiro Mitani & Hiro Ikemi & Shuguang Liu, 2012. "Effect of Precipitation Timescale Selection on Tempo-spatial Assessment of Paddy Water Demand in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1731-1746, April.
    11. Simmons, Luke J. & Wang, Junming & Sammis, Ted W. & Miller, David R., 2007. "An evaluation of two inexpensive energy-balance techniques for measuring water use in flood-irrigated pecans (Carya illinoinensis)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 181-191, March.
    12. Wang, Junming & Sammis, Ted W. & Andales, Allan A. & Simmons, Luke J. & Gutschick, Vincent P. & Miller, David R., 2007. "Crop coefficients of open-canopy pecan orchards," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 253-262, March.
    13. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    14. Changchun Xu & Xicheng Zhang & Jinxia Zhang & Yapeng Chen & Teshome L. Yami & Yang Hong, 2021. "Estimation of Crop Water Requirement Based on Planting Structure Extraction from Multi-Temporal MODIS EVI," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2231-2247, May.
    15. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    16. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Kumar, M. Dinesh & Trivedi, K. & Singh, O.P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," Book Chapters,, International Water Management Institute.
    18. Ibraimo, Nadia A. & Taylor, Nicky J. & Steyn, J. Martin & Gush, Mark B. & Annandale, John G., 2016. "Estimating water use of mature pecan orchards: A six stage crop growth curve approach," Agricultural Water Management, Elsevier, vol. 177(C), pages 359-368.
    19. Zambrano-Vaca, Carlos & Zotarelli, Lincoln & Beeson, Richard C. & Morgan, Kelly T. & Migliaccio, Kati W. & Chaparro, José X. & Olmstead, Mercy A., 2020. "Determining water requirements for young peach trees in a humid subtropical climate," Agricultural Water Management, Elsevier, vol. 233(C).
    20. Ajaz, Ali, 2016. "Analyzing Growth-Track and Uncertainties in Asia’s Irrigated Areas," OSF Preprints mbpk2, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:661-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.