IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i9p1287-1292.html
   My bibliography  Save this article

Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area

Author

Listed:
  • Lovelli, S.
  • Perniola, M.
  • Di Tommaso, T.
  • Ventrella, D.
  • Moriondo, M.
  • Amato, M.

Abstract

In the assessment of plant response to the climate changes, the effects of CO2 increase in the atmosphere and the subsequent rise of temperatures must be taken into account for their effects on crop physiology. In Mediterranean areas, a decrease of water availability and a more frequent occurrence of drought periods are expected. The objective of this study was to assess the impact of elevated CO2 concentration and high temperature on reference evapotranspiration (ETo) and crop evapotranspiration (ETc) in the Mediterranean areas. The Penman-Monteith equation was used to simulate the future changes of reference evapotranspiration (ETo) by the recalibration of the canopy resistance parameter. Besides, crop coefficients (Kc) were adjusted according to the future climate trend. Then the modified empirical model (ETc=EToxKc) was applied providing an effective quantification of the climate change impact on water use of irrigated crops grown in Mediterranean areas. In the studied area, water use assessment was carried out for the period from 1961 to 2006 (measured data) and for a period from 2071 until 2100 (simulated data), showing a future climatic scenario. Water and irrigation use of crops will change as a function of climate changes, thermal needs of single crops and time of the year when they grow. Climate simulation model foresees the tendency for a significant increase of temperatures and a decrease of total year rainfall with a change of their distribution. The temperature increase and the concomitant expected rainfall decrease lead to a rise of year potential water deficit. About the autumn-spring crops, as wheat, a further increase of water deficit, is not expected. On the contrary, for spring-summer crops as tomato, a significant increase of water deficit and thus of irrigation need, is foreseen. Actually, for crops growing in that period of the year, the substantial rise of evapotranspiration demand cannot be compensated by crop cycle reduction and partial stomatal closure.

Suggested Citation

  • Lovelli, S. & Perniola, M. & Di Tommaso, T. & Ventrella, D. & Moriondo, M. & Amato, M., 2010. "Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area," Agricultural Water Management, Elsevier, vol. 97(9), pages 1287-1292, September.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1287-1292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00102-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John R. Porter, 2005. "Rising temperatures are likely to reduce crop yields," Nature, Nature, vol. 436(7048), pages 174-174, July.
    2. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    3. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masia, Sara & Trabucco, Antonio & Spano, Donatella & Snyder, Richard L. & Sušnik, Janez & Marras, Serena, 2021. "A modelling platform for climate change impact on local and regional crop water requirements," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    3. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    4. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    5. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    2. Chintala, Syam & Karimindla, Arun Rao & Kambhammettu, BVN P., 2024. "Scaling relations between leaf and plant water use efficiencies in rainfed Cotton," Agricultural Water Management, Elsevier, vol. 292(C).
    3. Pires, Marcel Viana & Cunha, Dênis Antônio da, 2014. "Climate Change and Adaptive Strategies in Brazil: the economic effects of genetic breeding," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(4), January.
    4. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    5. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Haile, B. & Azzarri, C. & Heady, D. & You, L., 2018. "Climate, climate shocks and child nutrition in Africa’s diverse farming systems," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275928, International Association of Agricultural Economists.
    7. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    8. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    10. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    12. Noemi Mancosu & Donatella Spano & Morteza Orang & Sara Sarreshteh & Richard Snyder, 2016. "SIMETAW# - a Model for Agricultural Water Demand Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 541-557, January.
    13. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    14. Yan, Haofang & Acquah, Samuel Joe & Zhang, Chuan & Wang, Guoqing & Huang, Song & Zhang, Hengnian & Zhao, Baoshan & Wu, Haimei, 2019. "Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models," Agricultural Water Management, Elsevier, vol. 217(C), pages 201-211.
    15. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    16. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    18. Zhenzhen Zhang & Nianbing Zhou & Zhipeng Xing & Bingliang Liu & Jinyu Tian & Haiyan Wei & Hui Gao & Hongcheng Zhang, 2022. "Effects of Temperature and Radiation on Yield of Spring Wheat at Different Latitudes," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    19. Raziei, Tayeb & Pereira, Luis S., 2013. "Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran," Agricultural Water Management, Elsevier, vol. 121(C), pages 1-18.
    20. Huynh, Cong Minh, 2022. "How does research and development affect the nexus of climate change and agricultural productivity in Asian and Pacific countries?," MPRA Paper 112628, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1287-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.