IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i9p1287-1292.html
   My bibliography  Save this article

Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area

Author

Listed:
  • Lovelli, S.
  • Perniola, M.
  • Di Tommaso, T.
  • Ventrella, D.
  • Moriondo, M.
  • Amato, M.

Abstract

In the assessment of plant response to the climate changes, the effects of CO2 increase in the atmosphere and the subsequent rise of temperatures must be taken into account for their effects on crop physiology. In Mediterranean areas, a decrease of water availability and a more frequent occurrence of drought periods are expected. The objective of this study was to assess the impact of elevated CO2 concentration and high temperature on reference evapotranspiration (ETo) and crop evapotranspiration (ETc) in the Mediterranean areas. The Penman-Monteith equation was used to simulate the future changes of reference evapotranspiration (ETo) by the recalibration of the canopy resistance parameter. Besides, crop coefficients (Kc) were adjusted according to the future climate trend. Then the modified empirical model (ETc=EToxKc) was applied providing an effective quantification of the climate change impact on water use of irrigated crops grown in Mediterranean areas. In the studied area, water use assessment was carried out for the period from 1961 to 2006 (measured data) and for a period from 2071 until 2100 (simulated data), showing a future climatic scenario. Water and irrigation use of crops will change as a function of climate changes, thermal needs of single crops and time of the year when they grow. Climate simulation model foresees the tendency for a significant increase of temperatures and a decrease of total year rainfall with a change of their distribution. The temperature increase and the concomitant expected rainfall decrease lead to a rise of year potential water deficit. About the autumn-spring crops, as wheat, a further increase of water deficit, is not expected. On the contrary, for spring-summer crops as tomato, a significant increase of water deficit and thus of irrigation need, is foreseen. Actually, for crops growing in that period of the year, the substantial rise of evapotranspiration demand cannot be compensated by crop cycle reduction and partial stomatal closure.

Suggested Citation

  • Lovelli, S. & Perniola, M. & Di Tommaso, T. & Ventrella, D. & Moriondo, M. & Amato, M., 2010. "Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area," Agricultural Water Management, Elsevier, vol. 97(9), pages 1287-1292, September.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1287-1292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00102-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    2. John R. Porter, 2005. "Rising temperatures are likely to reduce crop yields," Nature, Nature, vol. 436(7048), pages 174-174, July.
    3. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masia, Sara & Trabucco, Antonio & Spano, Donatella & Snyder, Richard L. & Sušnik, Janez & Marras, Serena, 2021. "A modelling platform for climate change impact on local and regional crop water requirements," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    3. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    4. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    6. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Umra Waris & Saira Sarif & Syeda Adila Batool, 2024. "Exploring association and forecasting of evapotranspiration based on meteorological factors over megacity Lahore (Pakistan) and central place of Indo-Gangetic Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20255-20277, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    3. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    4. Chintala, Syam & Karimindla, Arun Rao & Kambhammettu, BVN P., 2024. "Scaling relations between leaf and plant water use efficiencies in rainfed Cotton," Agricultural Water Management, Elsevier, vol. 292(C).
    5. Pires, Marcel Viana & Cunha, Dênis Antônio da, 2014. "Climate Change and Adaptive Strategies in Brazil: the economic effects of genetic breeding," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(4), January.
    6. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    7. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    8. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    9. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Haile, B. & Azzarri, C. & Heady, D. & You, L., 2018. "Climate, climate shocks and child nutrition in Africa’s diverse farming systems," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275928, International Association of Agricultural Economists.
    11. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    12. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    14. Sharafi, Saeed & Nahvinia, Mohammad Javad, 2024. "Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions," Agricultural Water Management, Elsevier, vol. 299(C).
    15. Johan Grijsen, 2014. "Understanding the Impact of Climate Change on Hydropower : The Case of Cameroon," World Bank Publications - Reports 18243, The World Bank Group.
    16. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    17. Asmamaw, Desale Kidane & Janssens, Pieter & Dessie, Mekete & Tilahun, Seifu A. & Adgo, Enyew & Nyssen, Jan & Walraevens, Kristine & Assaye, Habtamu & Yenehun, Alemu & Nigate, Fenta & Cornelis, Wim M., 2023. "Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    19. Bastidas-Obando, E. & Bastiaanssen, W.G.M. & Jarmain, C., 2017. "Estimation of transpiration fluxes from rainfed and irrigated sugarcane in South Africa using a canopy resistance and crop coefficient model," Agricultural Water Management, Elsevier, vol. 181(C), pages 94-107.
    20. Jaeil Cho & Hikaru Komatsu & Yadu Pokhrel & Pat Yeh & Taikan Oki & Shinjiro Kanae, 2011. "The effects of annual precipitation and mean air temperature on annual runoff in global forest regions," Climatic Change, Springer, vol. 108(1), pages 401-410, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1287-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.