IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i10p1429-1434.html
   My bibliography  Save this article

Effects of water stress at different development stages on yield and water productivity of winter and summer safflower (Carthamus tinctorius L.)

Author

Listed:
  • Istanbulluoglu, A.
  • Gocmen, E.
  • Gezer, E.
  • Pasa, C.
  • Konukcu, F.

Abstract

A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74tha-1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.

Suggested Citation

  • Istanbulluoglu, A. & Gocmen, E. & Gezer, E. & Pasa, C. & Konukcu, F., 2009. "Effects of water stress at different development stages on yield and water productivity of winter and summer safflower (Carthamus tinctorius L.)," Agricultural Water Management, Elsevier, vol. 96(10), pages 1429-1434, October.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1429-1434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00102-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kar, Gouranga & Kumar, Ashwani & Martha, M., 2007. "Water use efficiency and crop coefficients of dry season oilseed crops," Agricultural Water Management, Elsevier, vol. 87(1), pages 73-82, January.
    2. Cavero, J. & Plant, R. E. & Shennan, C. & Friedman, D. B. & Williams, J. R. & Kiniry, J. R. & Benson, V. W., 1999. "Modeling nitrogen cycling in tomato-safflower and tomato-wheat rotations," Agricultural Systems, Elsevier, vol. 60(2), pages 123-135, May.
    3. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    4. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. Crop response to salinity," Agricultural Water Management, Elsevier, vol. 54(1), pages 81-92, March.
    5. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use," Agricultural Water Management, Elsevier, vol. 54(1), pages 67-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    2. Yousef Joshan & Behzad Sani & Hamid Jabbari & Hamid Mozafari & Payam Moaveni, 2019. "Effect of drought stress on oil content and fatty acids composition of some safflower genotypes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 563-567.
    3. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan & Begna, Sultan & Auld, Dick, 2016. "Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains," Agricultural Water Management, Elsevier, vol. 163(C), pages 354-362.
    4. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    5. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    6. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    7. Ghamarnia, Houshang & Jalili, Zahra, 2014. "Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region," Agricultural Water Management, Elsevier, vol. 132(C), pages 89-100.
    8. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    10. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.
    11. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Istanbulluoglu, Ahmet, 2009. "Effects of irrigation regimes on yield and water productivity of safflower (Carthamus tinctorius L.) under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 96(12), pages 1792-1798, December.
    2. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    3. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.
    4. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    6. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    7. E. Öztürk & H. Özer & T. Polat, 2008. "Growth and yield of safflower genotypes grown under irrigated and non-irrigated conditions in a highland environment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(10), pages 453-460.
    8. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    9. Muhammad Arshad Ullah & Imdad Ali Mahmood & Muhammad Rasheed, 2018. "Combination of Salinity and Sodicity Levels Facilitates Screening of Medicinal Crop Linseed (Linum Usitatissium)," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 10(4), pages 7911-7915, October.
    10. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    11. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    12. Yousef Joshan & Behzad Sani & Hamid Jabbari & Hamid Mozafari & Payam Moaveni, 2019. "Effect of drought stress on oil content and fatty acids composition of some safflower genotypes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 563-567.
    13. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    15. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    16. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    17. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    18. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1429-1434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.