IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp297-310.html
   My bibliography  Save this article

Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment

Author

Listed:
  • Montoya, F.
  • Camargo, D.
  • Domínguez, A.
  • Ortega, J.F.
  • Córcoles, J.I.

Abstract

Data from a two-year field experiment were used to calibrate (2011) and validate (2012) the parameters required by the CropSyst model for simulating the growth of a potato crop (Agria cultivar) in a semiarid area of Spain. The primary variables analysed during the parameterization model were leaf area index, canopy cover, total dry matter, total biomass at harvest, soil moisture balance, and evapotranspiration, being the potato crop subjected to four irrigation treatments (120%, 100%, 80%, and 60% of the crop water requirements “CWR”) under a center pivot system. The results showed that the CropSyst model attained a suitable goodness of fit with regards to the simulated and observed values (Willmott’s index close to 1 and errors around ±10%). Although the model includes a reduction coefficient for taking into account the effect of both water and temperature stress on the reference harvest index, yields at harvest were not properly simulated by the model. According to the results, the calibrated and validated CropSyst model showed that the 100% and the 80% CWR treatments are the most interesting ones for the farmers in the study area (both reached a suitable rate between high yield and high efficiency in the use of water).

Suggested Citation

  • Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:297-310
    DOI: 10.1016/j.agwat.2018.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418302221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    2. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    3. Pannkuk, C. D. & Stockle, C. O. & Papendick, R. I., 1998. "Evaluating CropSyst simulations of wheat management in a wheat-fallow region of the US pacific northwest," Agricultural Systems, Elsevier, vol. 57(2), pages 121-134, June.
    4. Cabelguenne, M. & Jones, C. A. & Marty, J. R. & Dyke, P. T. & Williams, J. R., 1990. "Calibration and validation of EPIC for crop rotations in southern France," Agricultural Systems, Elsevier, vol. 33(2), pages 153-171.
    5. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: II. Recommended documentation," Agricultural Water Management, Elsevier, vol. 98(6), pages 921-929, April.
    6. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    7. Pala, M. & Stockle, C. O. & Harris, H. C., 1996. "Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst," Agricultural Systems, Elsevier, vol. 51(2), pages 147-163, June.
    8. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    9. K.J. Boote & J.W. Jones & G. Hoogenboom & J.W. White, 2010. "The Role of Crop Systems Simulation in Agriculture and Environment," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 1(1), pages 41-54, January.
    10. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    11. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    12. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    13. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    14. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    2. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    3. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    4. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    5. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    7. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    8. Kaur, Harsimran & Huggins, David R. & Carlson, Bryan & Stockle, Claudio & Nelson, Roger, 2022. "Dryland fallow vs flex-cropping decisions in inland Pacific Northwest of USA," Agricultural Systems, Elsevier, vol. 201(C).
    9. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    10. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Pala, M. & Stockle, C. O. & Harris, H. C., 1996. "Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst," Agricultural Systems, Elsevier, vol. 51(2), pages 147-163, June.
    16. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    17. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    18. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Jalota, S.K. & Singh, Sukhvinder & Chahal, G.B.S. & Ray, S.S. & Panigraghy, S. & Bhupinder-Singh & Singh, K.B., 2010. "Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize-wheat cropping system: Field and simulation study," Agricultural Water Management, Elsevier, vol. 97(1), pages 83-90, January.
    20. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:297-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.