Author
Listed:
- Li, Nannan
- Shi, Xiaojuan
- Zhang, Humei
- Shi, Feng
- Zhang, Hongxia
- Liang, Qi
- Hao, Xianzhe
- Luo, Honghai
- Wang, Jun
Abstract
Subsurface drip irrigation in arid areas has the potential to replace traditional mulched drip irrigation to achieve green and sustainable cotton production. However, the suitable irrigation amount and frequency are still unclear, which seriously limits the ability of this model to improve water productivity and water-saving potential. Therefore, a field experiment was carried out from 2021 to 2023; a split plot experimental design was adopted with two irrigation amounts (W1, 3177 m3 ha−1; W2, 3840 m3 ha−1) and three irrigation frequencies (F1, 9; F2, 8; F3, 7). The effects of different irrigation strategies on the soil microenvironment, moisture content, biomass, and water use efficiency (WUE) of cotton organs were evaluated. The W2 treatment improved the soil moisture content, increased the soil temperature gradient, and reduced the soil conductivity, thereby increasing the moisture content and biomass of various organs. Moreover, compared with the F1 treatment, the F2 and F3 treatments were more likely to increase the soil moisture content, soil temperature gradient, WUEStem, WUELeaf and WUEBoll. In addition, the water consumption of the F2 and F3 treatments decreased by 3.9 % and 0.9 %, respectively, compared with that of the F1 treatment. These findings indicate that W2F2 can reduce water consumption while increasing boll biomass and WUEBoll. Further analysis revealed that under W2F2, WUEBoll was positively correlated with soil temperature gradient and soil conductivity and negatively correlated with leaf moisture content (LMC) and water consumption. In summary, with an irrigation amount of 3840 m3 ha−1, delaying the initial irrigation event and increasing the irrigation quota (8 irrigation events) improve the water environment in cotton fields, reducing soil temperature fluctuations and surface salt accumulation and synergistically increasing the boll biomass of cotton organs and WUEBoll. This irrigation strategy represents an effective cotton cultivation method to maximize cotton yield and improve resource utilization efficiency.
Suggested Citation
Li, Nannan & Shi, Xiaojuan & Zhang, Humei & Shi, Feng & Zhang, Hongxia & Liang, Qi & Hao, Xianzhe & Luo, Honghai & Wang, Jun, 2024.
"Optimizing irrigation strategies to improve the soil microenvironment and enhance cotton water productivity under deep drip irrigation,"
Agricultural Water Management, Elsevier, vol. 305(C).
Handle:
RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004311
DOI: 10.1016/j.agwat.2024.109095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004311. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.