IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v304y2024ics0378377424004207.html
   My bibliography  Save this article

How to effectively reduce sloping farmland nutrient loss and soil erosions in the Three Gorges Reservoir area

Author

Listed:
  • Yin, Yinghua
  • Li, Ganghao
  • Xia, Ying
  • Wu, Maoqian
  • Huang, Min
  • Zhai, Limei
  • Fan, Xianpeng
  • Zhou, Jiwen
  • Kong, Xiangqiong
  • Zhang, Fulin
  • Riaz, Muhammad

Abstract

Fertilization and soil conservation measures play crucial roles in influencing nutrient loss and soil erosion on sloping farmlands. However, the long-term effects of these measures and the characterization of nutrient loss and sediment yield under different rainfall types and crop growth stages were not well studied. Therefore, we designed six treatments for sloping farmlands in the Three Gorges Reservoir Area with a field experiment. A field experiment included downslope cultivation with chemical fertilizer (DF), downslope cultivation with chemical fertilizer plus manure (DFM), cross-slope cultivation with chemical fertilizer plus manure (CFM), no-till straw cover with chemical fertilizer plus manure (NSFM), ridge plant hedges with chemical fertilizer plus manure (RFM), and biochar interception ditches with chemical fertilizer plus manure (BFM). The results indicated that soil and water conservation measures in association with manure substitution significantly reduced runoff depth (14.3–22.5 %), sediment yield (10.3–46.5 %), and total nitrogen (TN) loss (13.5–36.5 %) compared to DF. NSFM significantly reduced total phosphorus (TP) loss by 17.4 % and the TP loss from the other treatments did not show significant differences compared to DF. Rainfall intensity and runoff depth were identified as critical factors influencing nutrient loss and soil erosion. NSFM showed maximal nutrient reduction performance under different rainfall intensities, while DFM was not significantly effective. NO3--N and particulate P dominated the loss of TN and TP. The first 30 minutes of runoff generation and the seedling stage were identified as risk periods for N and P loss. The study suggests that the NSFM treatment was the appropriate method to prevent soil and water nutrient loss. This provides important insights for the precise control of nutrient loss and soil erosion on sloping farmlands.

Suggested Citation

  • Yin, Yinghua & Li, Ganghao & Xia, Ying & Wu, Maoqian & Huang, Min & Zhai, Limei & Fan, Xianpeng & Zhou, Jiwen & Kong, Xiangqiong & Zhang, Fulin & Riaz, Muhammad, 2024. "How to effectively reduce sloping farmland nutrient loss and soil erosions in the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004207
    DOI: 10.1016/j.agwat.2024.109084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    4. Zhang, Qingwen & Liu, Dinghui & Cheng, Shanghong & Huang, Xinjun, 2016. "Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices," Agricultural Water Management, Elsevier, vol. 176(C), pages 1-8.
    5. Ramos, María Concepción & Lizaga, Ivan & Gaspar, Leticia & Quijano, Laura & Navas, Ana, 2019. "Effects of rainfall intensity and slope on sediment, nitrogen and phosphorous losses in soils with different use and soil hydrological properties," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongying & Zhu, Ningyuan & Qiao, Jun & Tang, Jun, 2024. "Evaluating the long-term effects of best management practices on pollution reduction and soil quality improvement in sloping farmland of the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    4. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    5. Ankit Garg & Insha Wani & Vinod Kushvaha, 2022. "Application of Artificial Intelligence for Predicting Erosion of Biochar Amended Soils," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    6. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    7. Guoming Du & Tongbing Guo & Chen Ma, 2022. "Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain," Land, MDPI, vol. 11(9), pages 1-13, September.
    8. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Sun, Liquan & Zhang, Biao & Yin, Ziming & Guo, Huili & Siddique, Kadambot H.M. & Wu, Shufang & Yang, Jiangtao, 2022. "Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Qiliang Hunag & Yingting Gong & Peiran Li & Ratih Kemala Dewi & Masakazu Komatsuzaki, 2024. "The Effects of Tillage Systems and Cover Crops on Soil Quality and Soybean Yield," Agriculture, MDPI, vol. 14(12), pages 1-14, November.
    11. Qian Wang & Deepika Koundal, 2022. "Dynamics of food nutrient loss and prediction of nutrient loss under variable temperature conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 225-235, March.
    12. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    13. Li, Linyang & Chen, Peng & Wang, Kaili & Zhang, Runqin & Yuan, Xiaoliang & Ge, Le & Li, Qian & Liu, Yi & Zhang, Xiaoquan & Li, Zhiguo, 2023. "Gramineae-legumes mixed planting effectively reduces soil and nutrient loss in orchards," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Nan Zhang & Qun Zhang & Yueqiao Li & Mansheng Zeng & Wan Li & Cuiying Chang & Yongrong Xu & Chunbo Huang, 2020. "Effect of Groundcovers on Reducing Soil Erosion and Non-Point Source Pollution in Citrus Orchards on Red Soil Under Frequent Heavy Rainfall," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    15. Wu, Lei & Liu, Xia & Ma, Xiaoyi, 2021. "How biochar, horizontal ridge, and grass affect runoff phosphorus fractions and possible tradeoffs under consecutive rainstorms in loessial sloping land?," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Wang, Wei & Wu, Xiaohong & Yin, Chunmei & Xie, Xiaoli, 2019. "Nutrition loss through surface runoff from slope lands and its implications for agricultural management," Agricultural Water Management, Elsevier, vol. 212(C), pages 226-231.
    17. Chenhui Li & Wenhai Shi & Mingbin Huang, 2023. "Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau," Land, MDPI, vol. 12(2), pages 1-16, January.
    18. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Tianxiao Li & Pengfei Yu & Dong Liu & Qiang Fu & Renjie Hou & Hang Zhao & Song Xu & Yutian Zuo & Ping Xue, 2021. "Effects of Biochar on Sediment Transport and Rill Erosion after Two Consecutive Years of Seasonal Freezing and Thawing," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    20. Xiaoan Chen & Ziwei Liang & Zhanyu Zhang & Long Zhang, 2020. "Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland under Natural Rainfall," Sustainability, MDPI, vol. 12(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.