IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p6984-d579259.html
   My bibliography  Save this article

Effects of Biochar on Sediment Transport and Rill Erosion after Two Consecutive Years of Seasonal Freezing and Thawing

Author

Listed:
  • Tianxiao Li

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Pengfei Yu

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Dong Liu

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Qiang Fu

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Renjie Hou

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Hang Zhao

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Song Xu

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Yutian Zuo

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

  • Ping Xue

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin 150030, China)

Abstract

This research explored the effects of biochar on slope runoff and sediment transport processes and the hydrodynamic mechanism of rill erosion under the seasonal freeze–thaw climate in the black soil area of Northeast China. The four slopes of 1.8, 3.6, 5.4 and 7.2° were set, corn straw biochar was used, and three biochar contents of 0 kg m −2 (B0 treatment), 6 kg m −2 (B6 treatment) and 12 kg m −2 (B12 treatment) were applied. The experimental plot was placed outdoors to simulate the freeze–thaw cycle of sloping farmland under natural conditions. Three artificial simulated rainfall tests were carried out before the end of seasonal freeze–thaw cycles and spring sowing date (May) in 2018 and 2019. The sediment transport process of runoff and the variation of hydrodynamic parameters in rills were analyzed under one and two seasons of freezing and thawing in natural outdoor conditions. The results show that biochar has a positive effect on reducing rainfall runoff and soil loss after one year and two years of seasonal freezing and thawing. The effect of biochar on the sediment concentration of slope runoff increased with increasing application time; in the second year, the B6 and B12 treatments reduced the sediment concentration by 5.5–14.8% and 3.3–13.6%, respectively, compared with the values of the first year. The Reynolds number ( Re ) in the rill flow after the B6 and B12 treatments decreased with increasing duration, which effectively reduced the turbulence degree of the flow on the rill of the slope. With the increase in duration, the rill critical erosion power increased; in 2018 and 2019, the critical shear force, critical runoff power and critical unit runoff power were 0.403 Pa, 0.098 m s −1 , and 0.002 N m −1 and 0.497 Pa, 0.124 m s −1 , and 0.003 N m −1 , respectively. This result indicates that increasing the duration and number of seasonal freeze–thaws can promote the development of biochar control of the runoff and sediment processes on slope and rill development.

Suggested Citation

  • Tianxiao Li & Pengfei Yu & Dong Liu & Qiang Fu & Renjie Hou & Hang Zhao & Song Xu & Yutian Zuo & Ping Xue, 2021. "Effects of Biochar on Sediment Transport and Rill Erosion after Two Consecutive Years of Seasonal Freezing and Thawing," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:6984-:d:579259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/6984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/6984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Y. & Tao, Y. & Wan, K.Y. & Zhang, G.S. & Liu, D.B. & Xiong, G.Y. & Chen, F., 2012. "Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China," Agricultural Water Management, Elsevier, vol. 110(C), pages 34-40.
    2. Su, J.J. & van Bochove, E. & Thériault, G. & Novotna, B. & Khaldoune, J. & Denault, J.T. & Zhou, J. & Nolin, M.C. & Hu, C.X. & Bernier, M. & Benoy, G. & Xing, Z.S. & Chow, L., 2011. "Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada," Agricultural Water Management, Elsevier, vol. 98(5), pages 867-876, March.
    3. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    4. Yanhua Zhuang & Chao Du & Liang Zhang & Yun Du & Sisi Li, 2015. "Research trends and hotspots in soil erosion from 1932 to 2013: a literature review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 743-758, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    2. Pengfei Yu & Tianxiao Li & Qiang Fu & Dong Liu & Renjie Hou & Hang Zhao, 2021. "Effect of Biochar on Soil and Water Loss on Sloping Farmland in the Black Soil Region of Northeast China during the Spring Thawing Period," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    3. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    4. Ankit Garg & Insha Wani & Vinod Kushvaha, 2022. "Application of Artificial Intelligence for Predicting Erosion of Biochar Amended Soils," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    5. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    6. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    7. Sumaryanto & Sri Hery Susilowati & Fitri Nurfatriani & Herlina Tarigan & Erwidodo & Tahlim Sudaryanto & Henri Wira Perkasa, 2022. "Determinants of Farmers’ Behavior towards Land Conservation Practices in the Upper Citarum Watershed in West Java, Indonesia," Land, MDPI, vol. 11(10), pages 1-21, October.
    8. Li, Hongying & Zhu, Ningyuan & Qiao, Jun & Tang, Jun, 2024. "Evaluating the long-term effects of best management practices on pollution reduction and soil quality improvement in sloping farmland of the Three Gorges Reservoir area," Agricultural Water Management, Elsevier, vol. 297(C).
    9. Hao Cheng & Chen Lin & Liangjie Wang & Junfeng Xiong & Lingyun Peng & Chenxi Zhu, 2020. "The Influence of Different Forest Characteristics on Non-point Source Pollution: A Case Study at Chaohu Basin, China," IJERPH, MDPI, vol. 17(5), pages 1-19, March.
    10. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    11. repec:zbw:inwedp:542013 is not listed on IDEAS
    12. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    13. H. Zhang & Q. Liu & X. Yu & L. Wang, 2014. "Influences of mulching durations on soil erosion and nutrient losses in a peanut (Arachis hypogaea)-cultivated land," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1175-1187, June.
    14. Minghao Mo & Zhao Liu & Jie Yang & Yuejun Song & Anguo Tu & Kaitao Liao & Jie Zhang, 2019. "Water and sediment runoff and soil moisture response to grass cover in sloping citrus land, Southern China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(1), pages 10-21.
    15. Qian Wang & Deepika Koundal, 2022. "Dynamics of food nutrient loss and prediction of nutrient loss under variable temperature conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 225-235, March.
    16. Ping Lei & Ram Kumar Shrestha & Bing Zhu & Suju Han & Hongbin Yang & Shaojun Tan & Jiupai Ni & Deti Xie, 2021. "A Bibliometric Analysis on Nonpoint Source Pollution: Current Status, Development, and Future," IJERPH, MDPI, vol. 18(15), pages 1-14, July.
    17. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    18. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    19. Víctor Hugo Durán Zuazo & Belén Cárceles Rodríguez & Simón Cuadros Tavira & Baltasar Gálvez Ruiz & Iván Francisco García-Tejero, 2024. "Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality," Land, MDPI, vol. 13(7), pages 1-17, July.
    20. Yanwen Wang & Song Hong & Yifei Wang & Xi Gong & Chao He & Zhendong Lu & F. Benjamin Zhan, 2019. "What is the difference in global research on Central Asia before and after the collapse of the USSR: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 909-930, May.
    21. Wang, Wei & Wu, Xiaohong & Yin, Chunmei & Xie, Xiaoli, 2019. "Nutrition loss through surface runoff from slope lands and its implications for agricultural management," Agricultural Water Management, Elsevier, vol. 212(C), pages 226-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:6984-:d:579259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.